ترغب بنشر مسار تعليمي؟ اضغط هنا

We have used two types of thermometry to study thermal fluctuations in a microcantilever-based system below 1 K. We measured the temperature of a cantilevers macroscopic degree-of-freedom (via the Brownian motion of its lowest flexural mode) and its microscopic degrees-of-freedom (via the electron temperature of a metal sample mounted on the cantilever). We also measured both temperatures response to a localized heat source. We find it possible to maintain thermal equilibrium between these two temperatures and a refrigerator down to at least 300 mK. These results are promising for ongoing experiments to probe quantum effects using micromechanical devices.
Angular momentum changing collisions can be suppressed in atoms whose valence electrons are submerged beneath filled shells of higher principle quantum number. To determine whether spin-exchange collisions are suppressed in these submerged shell atom s, we measured spin-exchange collisions of six hyperfine states of Mn at temperatures below 1 K. Although the 3d valence electrons in Mn are submerged beneath a filled 4s orbital, we find that the spin exchange rate coefficients are similar to those of Na and H (which are non-submerged shell atoms).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا