ترغب بنشر مسار تعليمي؟ اضغط هنا

86 - J. F. Helmboldt , W. M. Lane , 2012
The results of a climatological study of ionospheric disturbances derived from observations of cosmic sources from the Very Large Array (VLA) Low-frequency Sky Survey (VLSS) are presented. We have used the ionospheric corrections applied to the 74 MH z interferometric data within the VLSS imaging process to obtain fluctuation spectra for the total electron content (TEC) gradient on spatial scales from a few to hundreds of kilometers and temporal scales from less than one minute to nearly an hour. The observations sample nearly all times of day and all seasons. They also span latitudes and longitudes from 28 deg. N to 40 deg. N and 95 deg. W to 114 deg. W, respectively. We have binned and averaged the fluctuation spectra according to time of day, season, and geomagnetic (Kp index) and solar (F10.7) activity. These spectra provide a detailed, multi-scale account of seasonal and intraday variations in ionospheric activity with wavelike structures detected at wavelengths between about 35 and 250 km. In some cases, trends between spectral power and Kp index and/or F10.7 are also apparent. In addition, the VLSS observations allow for measurements of the turbulent power spectrum down to periods of 40 seconds (scales of ~0.4 km at the height of the E-region). While the level of turbulent activity does not appear to have a strong dependence on either Kp index or F10.7, it does appear to be more pronounced during the winter daytime, summer nighttime, and near dusk during the spring.
61 - J. F. Helmboldt 2012
The results of contemporaneous summer nighttime observations of midlatitude medium scale traveling ionospheric disturbances (MSTIDs) with the Very Large Array (VLA) in New Mexico and nearby ionosondes in Texas and Colorado are presented. Using 132, 2 0-minute observations, several instances of MSTIDs were detected, all having wavefronts aligned northwest to southeast and mostly propagating toward the southwest, consistent with previous studies of MSTIDs. However, some were also found to move toward the northeast. It was found that both classes of MSTIDs were only found when sporadic-E (Es) layers of moderate peak density (1.5<foEs<3 MHz) were present. Limited fbEs data from one ionosonde suggests that there was a significant amount of structure with the Es layers during observations when foEs>3 MHz that was not present when 1.5<foEs<3 MHz. No MSTIDs were observed either before midnight or when the F-region height was increasing at a relatively high rate, even when these Es layers were observed. Combining this result with AE indices which were relatively high at the time (an average of about 300 nT and maximum of nearly 700 nT), it is inferred that both the lack of MSTIDs and the increase in F-region height are due to substorm-induced electric fields. The northeastward-directed MSTIDs were strongest post-midnight during times when the F-region was observed to be collapsing relatively quickly. This implies that these two occurrences are related and likely both caused by rare shifts in F-region neutral wind direction from southwest to northwest.
We have used a relatively long, contiguous VHF observation of a bright cosmic radio source (Cygnus A) with the Very Large Array (VLA) to demonstrate the capability of this instrument to study the ionosphere. This interferometer, and others like it, c an observe ionospheric total electron content (TEC) fluctuations on a much wider range of scales than is possible with many other instruments. We have shown that with a bright source, the VLA can measure differential TEC values between pairs of antennas (delta-TEC) with an precision of 0.0003 TECU. Here, we detail the data reduction and processing techniques used to achieve this level of precision. In addition, we demonstrate techniques for exploiting these high-precision delta-TEC measurements to compute the TEC gradient observed by the array as well as small-scale fluctuations within the TEC gradient surface. A companion paper details specialized spectral analysis techniques used to characterize the properties of wave-like fluctuations within this data.
We have used archival 74 MHz VLA data spanning the last 15 years in combination with new data from the Long Wavelength Demonstrator Array (LWDA) and data from the literature covering the last 50 years to explore the evolution of Cas A at low radio fr equencies. We find that the secular decrease of the flux density of Cas A at ~80 MHz is rather stable over five decades of time, decreasing at a rate of 0.7-0.8% yr^-1. This is entirely consistent with previous estimates at frequencies as low as 38 MHz, indicating that the secular decrease is roughly the same at low frequencies, at least between 38 and 80 MHz. We also find strong evidence for as many as four modes of flux density oscillation about the slower secular decrease with periods of 3.10+/-0.02$ yr, 5.1+/-0.3 yr, 9.0+/-0.2 yr, and 24+/-2 yr. These are also consistent with fluctuations seen previously to occur on scales of a few years. These results provide compelling motivation for a thorough low frequency monitoring campaign of Cas A to constrain the nature and physical origins of these fluctuations, and to be able to better predict the flux density of Cas A at any given epoch so that it may be used as a reliable low frequency calibrator.
Using B, R, and H-alpha images of roughly equal-sized samples of low surface brightness (LSB) and high surface brightness (HSB) galaxies (~40 galaxies apiece), we have explored the dependence of HII region properties on local and global disc surface brightness. We have done this by constructing co-added HII region luminosity functions (LFs) according to local and central disc surface brightness and fitting Schechter functions to these LFs. The results show that the shape of the HII region LF within LSB galaxies does not change noticeably as different limiting (i.e., mu>mu_lim) local surface brightness values are used. However, the LFs for HSB galaxies have larger values of L_* and are less steep at the faint-end than those of LSB galaxies for limiting B-band local surface brightness values as faint as mu_B,lim~23-24. Both the LFs and the data for individual HII regions show that luminous (log L>39 ergs/s) HII regions are much more common within HSB discs than within LSB discs, implying that the newly formed star clusters are also larger. Taking this into account along with the results of Monte Carlo simulations, the shapes of the LFs imply that the regions within LSB discs and those within the LSB areas of HSB discs are relatively old (~5 Myr) while the regions within HSB discs for mu_B<24 are significantly younger (<1 Myr). Since the majority of the LSB galaxies do not have noticeable spiral arms and the majority of the HSB galaxies do, this may indicate a transition within HSB discs from spiral arm-driven star formation to a more locally driven, possibly sporadic form of star formation at mu_B~24, a transition that does not appear to occur within LSB discs.
We present the results of an effort to identify and study a sample of the likely progenitors of elliptical (E) and lenticular (S0) K+A galaxies. To achieve this, we have searched a sample ~11,000 nearby (m(r)<16) early-type galaxies selected by morph ology from the Sloan Digital Sky Survey (SDSS) Main spectroscopic sample for actively star-forming E and S0 galaxies. Using emission line ratios and visual inspection of SDSS g-band images, we have identified 335 galaxies from the SDSS Fourth Data Release (DR4) as actively star-forming E and S0 galaxies. These galaxies make up about 3% of the total early-type sample and less than 1% of all Main galaxies with m(r)<16. We also identified a sample of ~400 K+A galaxies from DR4 with m(r)<16; more than half of these are E and S0 galaxies. We find that star-forming early-type galaxies and K+A galaxies have similar mass distributions; they are on average less massive than typical early-type galaxies but more massive than the average star-forming galaxy. Both of these types of galaxies are found in higher fractions among all galaxies in lower density environments. The fractions of star-forming E and S0 galaxies and E and S0 K+A galaxies depend on environment in nearly the same way. Model spectra fit to the stellar continua of the star-forming E and S0 galaxies showed that their properties are consistent with star formation episodes of <1 Gyr in duration. The modelling results imply that on average, the star formation episodes will increase the stellar masses by about 4%. There is also evidence that the star-forming regions within these galaxies are rotationally supported.
We examine the radio properties of EGRET-detected blazars observed as part of the VLBA Imaging and Polarimetry Survey (VIPS). VIPS has a flux limit roughly an order of magnitude below the MOJAVE survey and most other samples that have been used to st udy the properties of EGRET blazars. At lower flux levels, radio flux density does not directly correlate with gamma-ray flux density. We do find that the EGRET-detected blazars tend to have higher brightness temperatures, greater core fractions, and possibly larger than average jet opening angles. A weak correlation is also found with jet length and with polarization. All of the well-established trends can be explained by systematically larger Doppler factors in the gamma-ray loud blazars, consistent with the measurements of higher apparent velocities found in monitoring programs carried out at radio frequencies above 10 GHz.
As a service to the community, we have compiled radio frequency spectra from the literature for all sources within the VLA Low Frequency Sky Survey (VLSS) that are brighter than 15 Jy at 74 MHz. Over 160 references were used to maximize the amount of spectral data used in the compilation of the spectra, while also taking care to determine the corrections needed to put the flux densities from all reference on the same absolute flux density scale. With the new VLSS data, we are able to vastly improve upon previous efforts to compile spectra of bright radio sources to frequencies below 100 MHz because (1) the VLSS flux densities are more reliable than those from some previous low frequency surveys and (2) the VLSS covers a much larger area of the sky (declination >-30 deg.) than many other low frequency surveys (e.g., the 8C survey). In this paper, we discuss how the spectra were constructed and how parameters quantifying the shapes of the spectra were derived. Both the spectra and the shape parameters are made available here to assist in the calibration of observations made with current and future low frequency radio facilities.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا