ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the rovibrational population redistribution of polar molecules in the electronic ground state induced by spontaneous emission and blackbody radiation. As a model system we use optically trapped LiCs molecules formed by photoassociation in an ultracold two-species gas. The population dynamics of vibrational and rotational states is modeled using an ab-initio electric dipole moment function and experimental potential energy curves. Comparison with the evolution of the v=3 electronic ground state yields good qualitative agreement. The analysis provides important input to assess applications of ultracold LiCs molecules in quantum simulation and ultracold chemistry.
We analyse the formation of ultracold 7Li133Cs molecules in the rovibrational ground state through photoassociation into the B1Pi state, which has recently been reported [J. Deiglmayr et al., Phys. Rev. Lett. 101, 133004 (2008)]. Absolute rate consta nts for photoassociation at large detunings from the atomic asymptote are determined and are found to be surprisingly large. The photoassociation process is modeled using a full coupled-channel calculation for the continuum state, taking all relevant hyperfine states into account. The enhancement of the photoassociation rate is found to be caused by an `echo of the triplet component in the singlet component of the scattering wave function at the inner turning point of the lowest triplet a3Sigma+ potential. This perturbation can be ascribed to the existence of a broad Feshbach resonance at low scattering energies. Our results elucidate the important role of couplings in the scattering wave function for the formation of deeply bound ground state molecules via photoassociation.
We recently reported the formation of ultracold LiCs molecules in the rovibrational ground state X1Sigma+,v=0,J=0 [J. Deiglmayr et al., PRL 101, 133004 (2008)]. Here we discuss details of the experimental setup and present a thorough analysis of the photoassociation step including the photoassociation line shape. We predict the distribution of produced ground state molecules using accurate potential nergy curves combined with an ab-initio dipole transition moment and compare this prediction with experimental ionization spectra. Additionally we improve the value of the dissociation energy for the X1Sigma+ state by high resolution spectroscopy of the vibrational ground state.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا