ﻻ يوجد ملخص باللغة العربية
We recently reported the formation of ultracold LiCs molecules in the rovibrational ground state X1Sigma+,v=0,J=0 [J. Deiglmayr et al., PRL 101, 133004 (2008)]. Here we discuss details of the experimental setup and present a thorough analysis of the photoassociation step including the photoassociation line shape. We predict the distribution of produced ground state molecules using accurate potential nergy curves combined with an ab-initio dipole transition moment and compare this prediction with experimental ionization spectra. Additionally we improve the value of the dissociation energy for the X1Sigma+ state by high resolution spectroscopy of the vibrational ground state.
The formation of ultracold metastable RbCs molecules is observed in a double species magneto-optical trap through photoassociation below the ^85Rb(5S_1/2)+^133Cs(6P_3/2) dissociation limit followed by spontaneous emission. The molecules are detected
Ultracold metastable RbCs molecules are observed in a double species MOT through photoassociation near the Rb(5S$_{1/2}$)+Cs(6P$_{3/2}$) dissociation limit followed by radiative stabilization. The molecules are formed in their lowest triplet electron
We report the production of ultracold heteronuclear Cs$^*$Yb molecules through one-photon photoassociation applied to an ultracold atomic mixture of Cs and Yb confined in an optical dipole trap. We use trap-loss spectroscopy to detect molecular state
We report on the observation of blue-detuned photoassociation in Rb2, in which vibrational levels are energetically above the corresponding excited atomic asymptote. 85Rb atoms in a MOT were photoassociated at short internuclear distances to levels o
Ultracold paramagnetic and polar diatomic molecules are among the promising systems for quantum simulation of lattice-spin models. Unfortunately, their experimental observation is still challenging. Based on our recent textit{ab-initio} calculations,