ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental results on the thermal desorption of benzene (C6H6) from amorphous silica (SiO2) are presented. The amorphous SiO2 substrate was imaged using atomic force microscopy (AFM), revealing a surface morphology reminiscent of that of interplane tary dust particles (IDPs). Temperature programmed desorption (TPD) experiments were conducted for a wide range of C6H6 exposures, yielding information on both C6H6-SiO2 interactions and the C6H6-C6H6 interactions present in the bulk C6H6 ice. The low coverage experiments reveal complicated desorption behaviour that results both from porosity and roughness in the SiO2 substrate, and repulsive interactions between C6H6 molecules. Kinetic parameters were obtained through a combination of direct analysis of the TPD traces and kinetic modelling, demonstrating the coverage dependence of both desorption energy and pre-exponential factor. Experiments were also performed whereby the pores were blocked by pre-exposure of the SiO2 to water vapour. C6H6 was observed to be adsorbed preferentially on the SiO2 film not covered by H2O at the temperature at which these experiments were performed. This observation means that intermolecular repulsion likely becomes important at smaller C6H6 exposures on grains with a H2O mantle. Kinetic modelling of C6H6 multilayer desorption yields kinetic parameters in good agreement with previous studies, with the SiO2 having little impact on the desorption beyond the first few layers.
We present experimental measurements of photodesorption from ices of astrophysical relevance. Layers of benzene and water ice were irradiated with a laser tuned to an electronic transition in the benzene molecule. The translational energy of desorbed molecules was measured by time-of-flight (ToF) mass spectrometry. Three distinct photodesorption processes were identified - a direct adsorbate-mediated desorption producing benzene molecules with a translational temperature of around 1200 K, an indirect adsorbate-mediated desorption resulting in water molecules with a translational temperature of around 450 K, and a substrate-mediated desorption of both benzene and water producing molecules with translational temperatures of around 530 K and 450 K respectively. The translational temperature of each population of desorbed molecules is well above the temperature of the ice matrix. The implications for gas-phase chemistry in the interstellar medium are discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا