ترغب بنشر مسار تعليمي؟ اضغط هنا

Desorption of hot molecules from photon irradiated interstellar ices

95   0   0.0 ( 0 )
 نشر من قبل Mark Collings
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present experimental measurements of photodesorption from ices of astrophysical relevance. Layers of benzene and water ice were irradiated with a laser tuned to an electronic transition in the benzene molecule. The translational energy of desorbed molecules was measured by time-of-flight (ToF) mass spectrometry. Three distinct photodesorption processes were identified - a direct adsorbate-mediated desorption producing benzene molecules with a translational temperature of around 1200 K, an indirect adsorbate-mediated desorption resulting in water molecules with a translational temperature of around 450 K, and a substrate-mediated desorption of both benzene and water producing molecules with translational temperatures of around 530 K and 450 K respectively. The translational temperature of each population of desorbed molecules is well above the temperature of the ice matrix. The implications for gas-phase chemistry in the interstellar medium are discussed.

قيم البحث

اقرأ أيضاً

We present Temperature Programmed Desorption (TPD) experiments of CO and N2 ices in pure, layered and mixed morphologies at various ice thicknesses and abundance ratios as well as simultaneously taken Reflection Absorption Infrared Spectra (RAIRS) of CO. A kinetic model has been developed to constrain the binding energies of CO and N2 in both pure and mixed environments and to derive the kinetics for desorption, mixing and segregation. For mixed ices N2 desorption occurs in a single step whereas for layered ices it proceeds in two steps, one corresponding to N2 desorption from a pure N2 ice environment and one corresponding to desorption from a mixed ice environment. The latter is dominant for astrophysically relevant ice thicknesses. The ratio of the binding energies, Rbe, for pure N2 and CO is found to be 0.936 +/- 0.03, and to be close to 1 for mixed ice fractions. The model is applied to astrophysically relevant conditions for cold pre-stellar cores and for protostars which start to heat their surroundings. The importance of treating CO desorption with zeroth rather than first order kinetics is shown. The experiments also provide lower limits of 0.87 +/- 0.05 for the sticking probabilities of CO-CO, N2-CO and N2-N2 ices at 14 K. The combined results from the desorption experiments, the kinetic model, and the sticking probability data lead to the conclusion that these solid-state processes of CO and N2 are very similar under astrophysically relevant conditions. This conclusion affects the explanations for the observed anti-correlations of gaseous CO and N2H+ in pre-stellar and protostellar cores.
126 - T. Suhasaria , J. D. Thrower , 2017
We present temperature programmed desorption (TPD) measurements of CO, CH$_4$, O$_2$ and CO$_2$ from the forsterite(010) surface in the sub-monolayer and multilayer coverage regimes. In the case of CO, CH$_4$ and O$_2$, multilayer growth begins prior to saturation of the monolayer peak, resulting in two clearly distinguishable desorption peaks. On the other hand a single peak for CO$_2$ is observed which shifts from high temperature at low coverage to low temperature at high coverages, sharpening upon multilayer formation. The leading edges are aligned for all the molecules in the multilayer coverage regime indicating zero order desorption. We have extracted multilayer desorption energies for these molecules using an Arrhenius analysis. For sub-monolayer coverages, we observe an extended desorption tail to higher temperature. Inversion analysis has been used to extract the coverage dependent desorption energies in the sub-monolayer coverage regime, from which we obtain the desorption energy distribution. We found that owing to the presence of multiple adsorption energy sites on the crystalline surface the typical desorption energies of these small molecules are significantly larger than obtained in previous measurements for several other substrates. Therefore molecules bound to crystalline silicate surfaces may remain locked in the solid state for a longer period of time before desorption into the gas phase.
Diffusion of species in icy dust grain mantles is a fundamental process that shapes the chemistry of interstellar regions; yet measurements of diffusion in interstellar ice analogs are scarce. Here we present measurements of CO diffusion into CO$_2$ ice at low temperatures (T=11--23~K) using CO$_2$ longitudinal optical (LO) phonon modes to monitor the level of mixing of initially layered ices. We model the diffusion kinetics using Ficks second law and find the temperature dependent diffusion coefficients are well fit by an Arrhenius equation giving a diffusion barrier of 300 $pm$ 40 K. The low barrier along with the diffusion kinetics through isotopically labeled layers suggest that CO diffuses through CO$_2$ along pore surfaces rather than through bulk diffusion. In complementary experiments, we measure the desorption energy of CO from CO$_2$ ices deposited at 11-50 K by temperature-programmed desorption (TPD) and find that the desorption barrier ranges from 1240 $pm$ 90 K to 1410 $pm$ 70 K depending on the CO$_2$ deposition temperature and resultant ice porosity. The measured CO-CO$_2$ desorption barriers demonstrate that CO binds equally well to CO$_2$ and H$_2$O ices when both are compact. The CO-CO$_2$ diffusion-desorption barrier ratio ranges from 0.21-0.24 dependent on the binding environment during diffusion. The diffusion-desorption ratio is consistent with the above hypothesis that the observed diffusion is a surface process and adds to previous experimental evidence on diffusion in water ice that suggests surface diffusion is important to the mobility of molecules within interstellar ices.
We present a model for the formation of large organic molecules in dark clouds. The molecules are produced in the high density gas-phase that exists immediately after ice mantles are explosively sublimated. The explosions are initiated by the catastr ophic recombination of trapped atomic hydrogen. We propose that, in molecular clouds, the processes of freeze-out onto ice mantles, accumulation of radicals, explosion and then rapid (three-body) gas-phase chemistry occurs in a cyclic fashion. This can lead to a cumulative molecular enrichment of the interstellar medium. A model of the time-dependent chemistries, based on this hypothesis, shows that significant abundances of large molecular species can be formed, although the complexity of the species is limited by the short expansion timescale in the gas, immediately following mantle explosion. We find that this mechanism may be an important source of smaller organic species, such as methanol and formaldehyde, as well as precursors to bio-molecule formation. Most significantly, we predict the gas-phase presence of these larger molecular species in quiescent molecular clouds and not just dynamically active regions, such as hot cores. As such the mechanism that we propose complements alternative methods of large molecule formation, such as those that invoke solid-state chemistry within activated ice mantles.
In the laboratory, the photo-and thermochemical evolution of ices, made of simple molecules of astrophysical relevance, always leads to the formation of semi-refractory water-soluble organic residues. Targeted searches for specific molecules do revea l the notable presence of two families of important molecular bricks of life: amino acids, key molecules in metabolism, and sugars, including ribose, the backbone of RNA molecules which support the genetic information in all living entities. Most of these molecules are indeed found in primitive carbonaceous meteorites and their implication in prebiotic chemistry at the surface of the early Earth must be seriously considered. These molecules are, almost all, chiral. In meteorites, some amino acids do show significant enantiomeric excesses, practically exclusively of the L-form. In our experiments, we investigate the role of circularly polarized light obtained from the DESIRS beamline of the synchrotron SOLEIL, a light commonly observed in regions of star formation, in order to generate an initial symmetry breaking in chiral amino acids produced and then indeed detected in our samples. We present first a brief global description of the chemical evolution of the Galaxy. Then, using our laboratory simulations, we suggest the importance of cosmic ices in the build-up of complex organic matter, including enantioenrichment at the surface of telluric planets like the Earth, thus establishing a link between astrochemistry and astrobiology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا