ترغب بنشر مسار تعليمي؟ اضغط هنا

In this article we present a neutron diffraction in-situ study of the thermal evolution and high-temperature structure of layered cobaltites Y(Ba, Sr)Co2 O5+{delta}. Neutron thermodiffractograms and magnetic susceptibility measurements are reported i n the temperature range 20 K <= T <= 570 K, as well as high resolution neutron diffraction experiments at selected temperatures. Starting from the as-synthesized samples with {delta} ~ 0.5, we show that the room temperature phases remain stable up to 550 K, where they start loosing oxygen and transform to a vacancy-disordered 112 structure with tetragonal symmetry. Our results also show how the so-called 122 structure can be stabilized at high temperature (around 450 K) in a sample in which the addition of Sr at the Ba site had suppressed its formation. In addition, we present the structural and magnetic properties of the resulting samples with a new oxygen content {delta} ~ 0.25 in the temperature range 20 K <= T <= 300 K.
In this article we study the effects of a partial substitution of Ba with the smaller cation Ca in the layered cobaltites YBaCo_2O_{5+delta} for delta approx 0.5. Neutron thermodiffractograms are reported for the compounds YBa_{0.95}Ca_{0.05}Co_2O_{5 .5} (x_{Ca}=0.05) and YBa_{0.90}Ca_{0.10}Co_2O_{5.5} (x_{Ca}=0.10) in the temperature range 20 K leq T leq 300 K, as well as high resolution neutron diffraction experiments at selected temperatures for the samples x_{Ca}=0.05, x_{Ca}=0.10 and the parent compound x_{Ca}=0. We have found the magnetic properties to be strongly affected by the cationic substitution. Although the 122 perovskite structure seems unaffected by Ca addition, the magnetic arrangements of Co ions are drastically modified: the antiferromagnetic (AFM) long-range order is destroyed, and a ferrimagnetic phase with spin state order is stabilized below T sim 290 K. For the sample with x_{Ca}=0.05 a fraction of AFM phase coexists with the ferrimagnetic one below T sim 190 K, whereas for x_{Ca}=0.10 the AFM order is completely lost. The systematic refinement of the whole series has allowed for a better understanding of the observed low-temperature diffraction patterns of the parent compound, YBaCo_2O_{5.5}, which had not yet been clarified. A two-phase scenario is proposed for the x_{Ca}=0 compound which is compatible with the phase coexistence observed in the x_{Ca}=0.05 sample.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا