ترغب بنشر مسار تعليمي؟ اضغط هنا

We report the discovery of nine metal-poor stars with high levels of r-process enhancement (+0.81<[Eu/Fe]<+1.13), including six subgiants and three stars on the red horizontal branch. We also analyze four previously-known r-process-enhanced metal-poo r red giants. From this sample of 13 stars, we draw the following conclusions. (1) High levels of r-process enhancement are found in a broad range of stellar evolutionary states, reaffirming that this phenomenon is not associated with a chemical peculiarity of red giant atmospheres. (2) Only 1 of 10 stars observed at multiple epochs shows radial velocity variations, reaffirming that stars with high levels of r-process enhancement are not preferentially found among binaries. (3) Only 2 of the 13 stars are highly-enhanced in C and N, indicating that there is no connection between high levels of r-process enhancement and high levels of C and N. (4) The dispersions in [Sr/Ba] and [Sr/Eu] are larger than the dispersions in [Ba/Eu] and [Yb/Eu], suggesting that the elements below the second r-process peak do not always scale with those in the rare earth domain, even within the class of highly-r-process-enhanced stars. (5) The light-element (12<Z<30) abundances of highly-r-process-enhanced stars are indistinguishable from those with normal levels of r-process material at the limit of our data, 3.5 per cent (0.015 dex) on average. The nucleosynthetic sites responsible for the large r-process enhancements did not produce any detectable light-element abundance signatures distinct from normal core-collapse supernovae.
Using near-ultraviolet spectra obtained with the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope, we detect neutral tellurium in three metal-poor stars enriched by products of r-process nucleosynthesis, BD+17 3248, HD 108317, and HD 128279. Tellurium (Te, Z=52) is found at the second r-process peak (A=130) associated with the N=82 neutron shell closure, and it has not been detected previously in Galactic halo stars. The derived tellurium abundances match the scaled solar system r-process distribution within the uncertainties, confirming the predicted second peak r-process residuals. These results suggest that tellurium is predominantly produced in the main component of the r-process, along with the rare earth elements.
Abundance observations indicate the presence of rapid-neutron capture (i.e., r-process) elements in old Galactic halo and globular cluster stars. Recent observations of the r-process-enriched star BD +17 3248 include new abundance determinations for the neutron-capture elements Cd I (Z=48), Lu II (Z = 71) and Os II (Z = 76), the first detections of these elements in metal-poor r-process-enriched halo stars. Combining these and previous observations, we have now detected 32 n-capture elements in BD +17 3248. This is the most of any metal-poor halo star to date. For the most r-process-rich (i.e. [Eu/Fe] ~= 1) halo stars, such as CS 22892-052 and BD +17 3248, abundance comparisons show that the heaviest stable n-capture elements (i.e., Ba and above, Z >= 56) are consistent with a scaled solar system r-process abundance distribution. The lighter n-capture element abundances in these stars, however, do not conform to the solar pattern. These comparisons, as well as recent observations of heavy elements in metal-poor globular clusters, suggest the possibility of multiple synthesis mechanisms for the n-capture elements. The heavy element abundance patterns in most metal-poor halo stars do not resemble that of CS 22892-052, but the presence of heavy elements such as Ba in nearly all metal-poor stars without s-process enrichment indicates that r-process enrichment in the early Galaxy is common.
We present here the initial results of a new study of massive star yields of Fe-peak elements. We have compiled from the literature a database of carefully determined solar neighborhood stellar abundances of seven iron-peak elements, Ti, V, Cr, Mn, F e, Co, and Ni and then plotted [X/Fe] versus [Fe/H] to study the trends as functions of metallicity. Chemical evolution models were then employed to force a fit to the observed trends by adjusting the input massive star metallicity-sensitive yields of Kobayashi et al. Our results suggest that yields of Ti, V, and Co are generally larger as well as anticorrelated with metallicity, in contrast to the Kobayashi et al. predictions. We also find the yields of Cr and Mn to be generally smaller and directly correlated with metallicity compared to the theoretical results. Our results for Ni are consistent with theory, although our model suggests that all Ni yields should be scaled up slightly. The outcome of this exercise is the computation of a set of integrated yields, i.e., stellar yields weighted by a slightly flattened time-independent Salpeter initial mass function and integrated over stellar mass, for each of the above elements at several metallicity points spanned by the broad range of observations. These results are designed to be used as empirical constraints on future iron-peak yield predictions by stellar evolution modelers. Special attention is paid to the interesting behavior of [Cr/Co] with metallicity -- these two elements have opposite slopes -- as well as the indirect correlation of [Ti/Fe] with [Fe/H]. These particular trends, as well as those exhibited by the inferred integrated yields of all iron-peak elements with metallicity, are discussed in terms of both supernova nucleosynthesis and atomic physics.
Recent radiative lifetime measurements accurate to +/- 5% using laser-induced fluorescence (LIF) on 43 even-parity and 15 odd-parity levels of Ce II have been combined with new branching fractions measured using a Fourier transform spectrometer (FTS) to determine transition probabilities for 921 lines of Ce II. This improved laboratory data set has been used to determine a new solar photospheric Ce abundance, log epsilon = 1.61 +/- 0.01 (sigma = 0.06 from 45 lines), a value in excellent agreement with the recommended meteoritic abundance, log epsilon = 1.61 +/- 0.02. Revised Ce abundances have also been derived for the r-process-rich metal-poor giant stars BD+17 3248, CS 22892-052, CS 31082-001, HD 115444 and HD 221170. Between 26 and 40 lines were used for determining the Ce abundance in these five stars, yielding a small statistical uncertainty of 0.01 dex similar to the Solar result. The relative abundances in the metal-poor stars of Ce and Eu, a nearly pure r-process element in the Sun, matches r-process only model predictions for Solar System material. This consistent match with small scatter over a wide range of stellar metallicities lends support to these predictions of elemental fractions. A companion paper includes an interpretation of these new precision abundance results for Ce as well as new abundance results and interpretations for Pr, Dy and Tm.
We have derived new abundances of the rare-earth elements Pr, Dy, Tm, Yb, and Lu for the solar photosphere and for five very metal-poor, neutron-capture r-process-rich giant stars. The photospheric values for all five elements are in good agreement w ith meteoritic abundances. For the low metallicity sample, these abundances have been combined with new Ce abundances from a companion paper, and reconsideration of a few other elements in individual stars, to produce internally-consistent Ba, rare-earth, and Hf (56<= Z <= 72) element distributions. These have been used in a critical comparison between stellar and solar r-process abundance mixes.
Recent radiative lifetime measurements accurate to +/- 5% (Stockett et al. 2007, J. Phys. B 40, 4529) using laser-induced fluorescence (LIF) on 8 even-parity and 62 odd-parity levels of Er II have been combined with new branching fractions measured u sing a Fourier transform spectrometer (FTS) to determine transition probabilities for 418 lines of Er II. This work moves Er II onto the growing list of rare earth spectra with extensive and accurate modern transition probability measurements using LIF plus FTS data. This improved laboratory data set has been used to determine a new solar photospheric Er abundance, log epsilon = 0.96 +/- 0.03 (sigma = 0.06 from 8 lines), a value in excellent agreement with the recommended meteoric abundance, log epsilon = 0.95 +/- 0.03. Revised Er abundances have also been derived for the r-process-rich metal-poor giant stars CS 22892-052, BD+17 3248, HD 221170, HD 115444, and CS 31082-001. For these five stars the average Er/Eu abundance ratio, <log epsilon (Er/Eu)> = 0.42, is in very good agreement with the solar-system r-process ratio. This study has further strengthened the finding that r-process nucleosynthesis in the early Galaxy which enriched these metal-poor stars yielded a very similar pattern to the r-process which enriched later stars including the Sun.
108 - F. Montes , T. C. Beers , J. Cowan 2007
Recent observations of r-process-enriched metal-poor star abundances reveal a non-uniform abundance pattern for elements $Zleq47$. Based on non-correlation trends between elemental abundances as a function of Eu-richness in a large sample of metal-po or stars, it is shown that the mixing of a consistent and robust light element primary process (LEPP) and the r-process pattern found in r-II metal-poor stars explains such apparent non-uniformity. Furthermore, we derive the abundance pattern of the LEPP from observation and show that it is consistent with a missing component in the solar abundances when using a recent s-process model. As the astrophysical site of the LEPP is not known, we explore the possibility of a neutron capture process within a site-independent approach. It is suggested that scenarios with neutron densities $n_{n}leq10^{13}$ $cm^{-3}$ or in the range $n_{n}geq10^{24}$ $cm^{-3}$ best explain the observations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا