ترغب بنشر مسار تعليمي؟ اضغط هنا

We provide a brief review of thermohaline physics and why it is a candidate extra mixing mechanism during the red giant branch (RGB). We discuss how thermohaline mixing (also called $delta$ $mu$ mixing) during the RGB due to helium-3 burning, is more complicated than the operation of thermohaline mixing in other stellar contexts (such as following accretion from a binary companion). We try to use observations of carbon depletion in globular clusters to help constrain the formalism and the diffusion coefficient or mixing velocity that should be used in stellar models. We are able to match the spread of carbon depletion for metal poor field giants but are unable to do so for cluster giants, which may show evidence of mixing prior to even the first dredge-up event.
We present MONTAGE, a post-processing nucleosynthesis code that combines a traditional network for isotopes lighter than calcium with a rapid algorithm for calculating the s-process nucleosynthesis of the heavier isotopes. The separation of those par ts of the network where only neutron-capture and beta-decay reactions are significant provides a substantial advantage in computational efficiency. We present the yields for a complete set of s-process isotopes for a 3 Mo, Z = 0.02 stellar model, as a demonstration of the utility of the approach. Future work will include a large grid of models suitable for use in calculations of Galactic chemical evolution.
[Abridged] We calculate the structural evolution and nucleosynthesis of a grid of models covering the metallicity range: -6.5 < [Fe/H] < -3.0 (plus Z=0), and mass range: 0.85 < M < 3.0 Msun, amounting to 20 stars in total. In this paper, the first of a series describing and analysing this large data set, we present the resulting stellar yields. Many of the models experience violent nuclear burning episodes not seen at higher metallicities. We refer to these events as `Dual Flashes. These events have also been reported by previous studies. Some of the material processed by the Dual Flashes is dredged up causing significant surface pollution with a distinct chemical composition. We also analyse the yields in terms of C and N, comparing them to the observed CEMP abundances. At the lowest metallicities ([Fe/H] < -4.0) we find the yields to contain ~1 to 2 dex too much carbon, in agreement with all previous studies. At higher metallicities ([Fe/H] = -3.0), where the observed data set is much larger, all our models produce yields with [C/Fe] values consistent with those observed in the most C-rich CEMPs. However it is only the low-mass models that undergo the Dual Shell Flash (which occurs at the start of the TPAGB) that can best reproduce the C and N observations. Normal Third Dredge-Up can not reproduce the observations because at these metallicities intermediate mass models (M > 2 Msun) suffer HBB which converts the C to N thus lowering [C/N] well below the observations, whilst if TDU were to occur in the low-mass (M < 1 Msun) models (we do not find it to occur in our models), the yields would be expected to be C-rich only, which is at odds with the `dual pollution of C and N generally observed in the CEMPs.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا