ترغب بنشر مسار تعليمي؟ اضغط هنا

MONTAGE: AGB nucleosynthesis with full s-process calculations

184   0   0.0 ( 0 )
 نشر من قبل Ross Church
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present MONTAGE, a post-processing nucleosynthesis code that combines a traditional network for isotopes lighter than calcium with a rapid algorithm for calculating the s-process nucleosynthesis of the heavier isotopes. The separation of those parts of the network where only neutron-capture and beta-decay reactions are significant provides a substantial advantage in computational efficiency. We present the yields for a complete set of s-process isotopes for a 3 Mo, Z = 0.02 stellar model, as a demonstration of the utility of the approach. Future work will include a large grid of models suitable for use in calculations of Galactic chemical evolution.

قيم البحث

اقرأ أيضاً

In this paper we present a large-scale sensitivity study of reaction rates in the main component of the $s$ process. The aim of this study is to identify all rates, which have a global effect on the $s$ process abundance distribution and the three mo st important rates for the production of each isotope. We have performed a sensitivity study on the radiative $^{13}$C-pocket and on the convective thermal pulse, sites of the $s$ process in AGB stars. We identified 22 rates, which have the highest impact on the $s$-process abundances in AGB stars.
Aims. We investigate the s-process during the AGB phase of stellar models whose cores are enforced to rotate at rates consistent with asteroseismology observations of their progenitors and successors. Methods. We calculated new 2M$_{odot}$, Z=0.01 mo dels, rotating at 0, 125, and 250 km/s at the start of main sequence. An artificial, additional viscosity was added to enhance the transport of angular momentum in order to reduce the core rotation rates to be in agreement with asteroseismology observations. We compared rotation rates of our models with observed rotation rates during the MS up to the end of core He burning, and the white dwarf phase. Results. We present nucleosynthesis calculations for these rotating AGB models that were enforced to match the asteroseismic constraints on rotation rates of MS, RGB, He-burning, and WD stars. In particular, we calculated one model that matches the upper limit of observed rotation rates of core He-burning stars and we also included a model that rotates one order of magnitude faster than the upper limit of the observations. The s-process production in both of these models is comparable to that of non-rotating models. Conclusions. Slowing down the core rotation rate in stars to match the above mentioned asteroseismic constraints reduces the rotationally induced mixing processes to the point that they have no effect on the s-process nucleosynthesis. This result is independent of the initial rotation rate of the stellar evolution model. However, there are uncertainties remaining in the treatment of rotation in stellar evolution, which need to be reduced in order to confirm our conclusions, including the physical nature of our approach to reduce the core rotation rates of our models, and magnetic processes.
The production of the neutron-capture isotopes beyond iron that we observe today in the solar system is the result of the combined contribution of the r-process, the s- process and possibly the i-process. Low-mass AGB (2 < M/Msun < 3) and massive (M >10 Msun ) stars have been identified as the sites of the s-process. In this work we consider the evolution and nucleosynthesis of low-mass AGB stars. We provide an update of the NuGrid Set models, adopting the same general physics assumptions but using an updated convective-boundary mixing model accounting for the contribution from internal gravity waves. The combined data set includes the initial masses Mzams/Msun = 2, 3 for Z = 0.03, 0.02, 0.01. These models are computed with the MESA stellar code and the evolution is followed up to the end of the AGB phase. The nucleosynthesis was calculated for all isotopes in post-processing with the NuGrid mppnp code. The convective boundary mixing model leads to the formation of a 13C-pocket three times wider compared to the one obtained in the previous set of models, bringing the simulation results now in closer agreement with observations. We also discuss the potential impact of other processes inducing mixing, like rotation, adopting parametric models compatible with theory and observations. Complete yield data tables, derived data products and online analytic data access are provided.
We provide an individual analysis of 94 carbon enhanced metal-poor stars showing an s-process enrichment (CEMP-s) collected from the literature. The s-process enhancement observed in these stars is ascribed to mass transfer by stellar winds in a bina ry system from a more massive companion evolving faster toward the asymptotic giant branch (AGB) phase. The theoretical AGB nucleosynthesis models have been presented in Paper I. Several CEMP-s stars show an enhancement in both s and r-process elements (CEMP-s/r). In order to explain the peculiar abundances observed in CEMP-s/r stars, we assume that the molecular cloud from which CEMP-s formed was previously enriched in r-elements by Supernovae pollution. A general discussion and the method adopted in order to interpret the observations have been provided in Paper II. We present in this paper a detailed study of spectroscopic observations of individual stars. We consider all elements from carbon to bismuth, with particular attention to the three s-process peaks, ls (Y, Zr), hs (La, Nd, Sm) and Pb, and their ratios [hs/ls] and [Pb/hs]. The presence of an initial r-process contribution may be typically evaluated by the [La/Eu] ratio. We found possible agreements between theoretical predictions and spectroscopic data. In general, the observed [Na/Fe] (and [Mg/Fe]) provide information on the AGB initial mass, while [hs/ls] and [Pb/hs] are mainly indicators of the s-process efficiency. A range of 13C-pocket strengths is required to interpret the observations. However, major discrepancies between models and observations exist. We highlight star by star the agreements and the main problems encountered and, when possible, we suggest potential indications for further studies. These discrepancies provide starting points of debate for unsolved problems ...
227 - B. Guo , Z. H. Li , M. Lugaro 2012
We present a new measurement of the $alpha$-spectroscopic factor ($S_alpha$) and the asymptotic normalization coefficient (ANC) for the 6.356 MeV 1/2$^+$ subthreshold state of $^{17}$O through the $^{13}$C($^{11}$B, $^{7}$Li)$^{17}$O transfer reactio n and we determine the $alpha$-width of this state. This is believed to have a strong effect on the rate of the $^{13}$C($alpha$, $n$)$^{16}$O reaction, the main neutron source for {it slow} neutron captures (the $s$-process) in asymptotic giant branch (AGB) stars. Based on the new width we derive the astrophysical S-factor and the stellar rate of the $^{13}$C($alpha$, $n$)$^{16}$O reaction. At a temperature of 100 MK our rate is roughly two times larger than that by citet{cau88} and two times smaller than that recommended by the NACRE compilation. We use the new rate and different rates available in the literature as input in simulations of AGB stars to study their influence on the abundances of selected $s$-process elements and isotopic ratios. There are no changes in the final results using the different rates for the $^{13}$C($alpha$, $n$)$^{16}$O reaction when the $^{13}$C burns completely in radiative conditions. When the $^{13}$C burns in convective conditions, as in stars of initial mass lower than $sim$2 $M_sun$ and in post-AGB stars, some changes are to be expected, e.g., of up to 25% for Pb in our models. These variations will have to be carefully analyzed when more accurate stellar mixing models and more precise observational constraints are available.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا