ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of velocity dispersion of dark matter particles on the CMB TT power spectrum and on the matter linear power spectrum are investigated using a modified CAMB code. Cold dark matter originated from thermal equilibrium processes does not produce appreciable effects but this is not the case if particles have a non-thermal origin. A cut-off in the matter power spectrum at small scales, similar to that produced by warm dark matter or that produced in the late forming dark matter scenario, appears as a consequence of velocity dispersion effects, which act as a pressure perturbation.
We calculate static and spherically symmetric solutions for the Rastall modification of gravity to describe Neutron Stars (NS). The key feature of the Rastall gravity is the non-conservation of the energy-momentum tensor proportionally to the space-t ime curvature. Using realistic equations of state for the NS interior we place a conservative bound on the non-GR behaviour of the Rastall theory which should be $lesssim 1%$ level. This work presents the more stringent constraints on the deviations of GR caused by the Rastall proposal.
Although general relativistic cosmological solutions, even in the presence of pressure, can be mimicked by using neo-Newtonian hydrodynamics, it is not clear whether there exists the same Newtonian correspondence for spherical static configurations. General relativity solutions for stars are known as the Tolman-Oppenheimer-Volkoff (TOV) equations. On the other hand, the Newtonian description does not take into account the total pressure effects and therefore can not be used in strong field regimes. We discuss how to incorporate pressure in the stellar equilibrium equations within the neo-Newtonian framework. We compare the Newtonian, neo-Newtonian and the full relativistic theory by solving the equilibrium equations for both three approaches and calculating the mass-radius diagrams for some simple neutron stars equation of state.
We assume cold dark matter to possess a small bulk-viscous pressure which typically attenuates the growth of inhomogeneities. Explicit calculations, based on Eckarts theory of dissipative processes, reveal that for viscous cold dark matter the usual Newtonian approximation for perturbation scales smaller than the Hubble scale is no longer valid. We advocate the use of a neo-Newtonian approach which consistently incorporates pressure effects into the fluid dynamics and correctly reproduces the general relativistic dynamics. This result is of interest for numerical simulations of nonlinear structure formation involving nonstandard dark-matter fluids. We obtain upper limits on the magnitude of the viscous pressure by requiring that relevant perturbation amplitudes should grow sufficiently to enter the nonlinear stage.
The differential age data of astrophysical objects that have evolved passivelly during the history of the universe (e.g. red galaxies) allows to test theoretical cosmological models through the predicted Hubble function expressed in terms of the reds hift $z$, $H(z)$. We use the observational data for $H(z)$ to test unified scenarios for dark matter and dark energy. Specifically, we focus our analysis on the Generalized Chaplygin Gas (GCG) and the viscous fluid (VF) models. For the GCG model, it is shown that the unified scenario for dark energy and dark matter requires some priors. For the VF model we obtain estimations for the free parameters that may be compared with further analysis mainly at perturbative level.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا