ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a computation of B-meson decay constants from lattice QCD simulations within the framework of Heavy Quark Effective Theory for the b-quark. The next-to-leading order corrections in the HQET expansion are included non-perturbatively. Based on Nf=2 gauge field ensembles, covering three lattice spacings a (0.08-0.05)fm and pion masses down to 190MeV, a variational method for extracting hadronic matrix elements is used to keep systematic errors under control. In addition we perform a careful autocorrelation analysis in the extrapolation to the continuum and to the physical pion mass limits. Our final results read fB=186(13)MeV, fBs=224(14)MeV and fBs/fB=1.203(65). A comparison with other results in the literature does not reveal a dependence on the number of dynamical quarks, and effects from truncating HQET appear to be negligible.
We report our final estimate of the b-quark mass from $N_f=2$ lattice QCD simulations using Heavy Quark Effective Theory non-perturbatively matched to QCD at $O(1/m_h)$. Treating systematic and statistical errors in a conservative manner, we obtain $ overline{m}_{rm b}^{overline{rm MS}}(2 {rm GeV})=4.88(15)$ GeV after an extrapolation to the physical point.
Multi-hadron operators are crucial for reliably extracting the masses of excited states lying above multi-hadron thresholds in lattice QCD Monte Carlo calculations. The construction of multi-hadron operators with significant coupling to the lowest-ly ing multi-hadron states of interest involves combining single hadron operators of various momenta. The design and implementation of large sets of spatially-extended single-hadron operators of definite momentum and their combinations into two-hadron operators are described. The single hadron operators are all assemblages of gauge-covariantly-displaced, smeared quark fields. Group-theoretical projections onto the irreducible representations of the symmetry group of a cubic spatial lattice are used in all isospin channels. Tests of these operators on 24^3 x 128 and 32^3 x 256 anisotropic lattices using a stochastic method of treating the low-lying modes of quark propagation which exploits Laplacian Heaviside quark-field smearing are presented. The method provides reliable estimates of all needed correlations, even those that are particularly difficult to compute, such as eta eta -> eta eta in the scalar channel, which involves the subtraction of a large vacuum expectation value. A new glueball operator is introduced, and the evaluation of the mixing of this glueball operator with a quark-antiquark operator, pi-pi, and eta-eta operators is shown to be feasible.
We present our analysis of B physics quantities using non-perturbatively matched Heavy Quark Effective Theory (HQET) in Nf= 2 lattice QCD on the CLS ensembles. Using all-to-all propagators, HYP-smeared static quarks, and the Generalized Eigenvalue Pr oblem (GEVP) approach with a conservative plateau selection procedure, we are able to systematically control all sources of error. With significantly increased statistics compared to last year, our preliminary results are mb (mb) = 4.22(10)(4)z GeV for the MS b-quark mass, and fB = 193(9)stat (4)_chi MeV and fBs = 219(12)stat MeV for the B-meson decay constants.
344 - J. Bulava , J. Foley , Y.C. Jhang 2011
We report on our progress in computing the excitation spectrum in Lattice QCD. We focus on the isospin 0, 1 and 2 channels using the stochastic LapH algorithm for the quark propagators. For the isospin-0 channel, a new glueball operator constructed f rom the stochastic LapH operator is included in the variational basis along with the isoscalar meson and pi-pi operators. A representative signal for each channel is presented and the feasibility of extending the calculations to larger lattices is discussed.
Our progress in computing the spectrum of excited baryons and mesons in lattice QCD is described. Sets of spatially-extended hadron operators with a variety of different momenta are used. A new method of stochastically estimating the low-lying effect s of quark propagation is utilized which allows reliable determinations of temporal correlations of both single-hadron and multi-hadron operators. The method is tested on the isoscalar mesons in the scalar, pseudoscalar, and vector channels, and on the two-pion system of total isospin I=0,1,2.
Progress in computing the spectrum of excited baryons and mesons in lattice QCD is described. Large sets of spatially-extended hadron operators are used. A new method of stochastically estimating the low-lying effects of quark propagation is utilized which allows reliable determinations of temporal correlations of both single-hadron and multi-hadron operators. The method is tested on the eta, sigma, omega mesons.
The energies of the excited states of the Nucleon, $Delta$ and $Omega$ are computed in lattice QCD, using two light quarks and one strange quark on anisotropic lattices. The calculation is performed at three values of the light quark mass, correspond ing to pion masses $m_{pi}$ = 392(4), 438(3) and 521(3) MeV. We employ the variational method with a large basis of interpolating operators enabling six energies in each irreducible representation of the lattice to be distinguished clearly. We compare our calculation with the low-lying experimental spectrum, with which we find reasonable agreement in the pattern of states. The need to include operators that couple to the expected multi-hadron states in the spectrum is clearly identified.
Correlation functions of the simplest multi-particle state will be presented using distilled quark propagators. The I=2 pi-pi state can be simulated without computing disconnected diagrams and thus is the simplest two-particle state that can be studi ed with quark sources placed on a single time-slice. We study the quality of the signals of this pi-pi correlation function using the quark-smearing guided distillation method. Results will be presented for pi-pi correlation functions computed on dynamical, anisotropic lattices.
221 - J. Bulava , R. Edwards , K.J. Juge 2008
Hadron spectroscopy on dynamical configurations are faced with the difficulties of dealing with the mixing of single particle states and multi-hadron states (for large spatial volumes and light dynamical quarks masses). It is conceivable that explici t multi-hadron interpolating operators will be necessary for obtaining sufficiently good overlap onto multi-hadron states in order to extract the low-lying excitation spectrum. We explore here the feasibility of using four noise diluted all-to-all quark propagators in the construction of explicit two-hadron operators on quenched, anisotropic lattices. Our longer term goal is to use these operators on large anisotropic, dynamical configurations for hadron spectroscopy.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا