ترغب بنشر مسار تعليمي؟ اضغط هنا

Context: Young massive clusters are key to map the Milky Ways structure, and near-IR large area sky surveys have contributed strongly to the discovery of new obscured massive stellar clusters. Aims: We present the third article in a series of paper s focused on young and massive clusters discovered in the VVV survey. This article is dedicated to the physical characterization of VVV CL086, using part of its OB-stellar population. Methods: We physically characterized the cluster using $JHK_S$ near-infrared photometry from ESO public survey VVV images, using the VVV-SkZ pipeline, and near-infrared $K$-band spectroscopy, following the methodology presented in the first article of the series. Results: Individual distances for two observed stars indicate that the cluster is located at the far edge of the Galactic bar. These stars, which are probable cluster members from the statistically field-star decontaminated CMD, have spectral types between O9 and B0V. According to our analysis, this young cluster ($1.0$ Myr $<$ age $< 5.0$ Myr) is located at a distance of $11^{+5}_{-6}$ kpc, and we estimate a lower limit for the cluster total mass of $(2.8^{+1.6}_{-1.4})cdot10^3 {M}_{odot}$. It is likely that the cluster contains even earlier and more massive stars.
Context: The ESO Public Survey VISTA Variables in the Via Lactea (VVV) provides deep multi-epoch infrared observations for an unprecedented 562 sq. degrees of the Galactic bulge, and adjacent regions of the disk. In this survey nearly 150 new open cl usters and cluster candidates have been discovered. Aims: This is the second in a series of papers about young, massive open clusters observed using the VVV survey. We present the first study of six recently discovered clusters. These clusters contain at least one newly discovered Wolf-Rayet (WR) star. Methods: Following the methodology presented in the first paper of the series, wide-field, deep JHKs VVV observations, combined with new infrared spectroscopy, are employed to constrain fundamental parameters for a subset of clusters. Results: We affirm that the six studied stellar groups are real young (2-7 Myr) and massive (between 0.8 and 2.2 10^3 Msol) clusters. They are highly obscured (Av ~ 5-24 mag) and compact (1-2 pc). In addition to WR stars, two of the six clusters also contain at least one red supergiant star. We claim the discovery of 8 new WR stars, and 3 stars showing WR-like emission lines which could be classified WR or OIf. Preliminary analysis provides initial masses of ~30-50 Msol for the WR stars. Finally,we discuss the spiral structure of the Galaxy using as tracers the six new clusters together with the previously studied VVV clusters.
34 - J. Borissova 2012
Aims. We report new results for the massive evolved and main sequence members of the young galactic cluster DBS2003 179. We determine the physical parameters and investigate the high-mass stellar content of the cluster, as well as of its close vicini ty. Methods. Our analysis is based on ISAAC/VLT moderate-resolution (Rapprox4000) infrared spectroscopy of the brightest cluster members. We derive stellar parameters for sixteen of the stellar members, using full non-LTE modeling of the obtained spectra. Results. The cluster contains three late WN or WR/LBV stars (Obj 4, Obj 15, and Obj 20:MDM32) and at least 5 OIf and 5 OV stars. According to the Hertzsprung-Russell diagram for DBS2003 179, the WR stars show masses above 85Msun, the OIf stars are between 40 and 80Msun, and the main sequence O stars are >20Msun. There are indications of binarity for Obj 4 and Obj 11, and Obj 3 shows a variable spectrum. The cluster is surrounded by a continuous protostar formation region most probably triggered by DBS2003 179. Conclusions. We confirm that DBS2003 179 is young massive cluster (2.5 10^4Msun) very close to the Galactic center at the distance of 7.9+-0.8 kpc.
50 - R. Kurtev 2008
The estimated total number of Milky Way globulars is 160+-20. The question of whether there are any more undiscovered globular clusters in the Milky Way is particularly relevant with advances in near and mid-IR instrumentation. This investigation is a part of a long-term project to search the inner Milky Way for hidden star clusters and to study them in detail. GLIMPSE-C02 (G02) is one of these objects, situated near the Galactic plane (l=14.129deg, b=-0.644deg). Our analysis is based on SOFI/NTT JHKs imaging and low resolution (R~1400) spectroscopy of three bright cluster red giants in the K atmospheric window. We derived the metal abundance by analysis of these spectra and from the slope of the RGB. The cluster is deeply embedded in dust and undergoes a mean reddening of Av~24.8+-3 mag. The distance to the object is D=4.6+-0.7kpc. The metal abundance of G02 is [Fe/H](H96)=-0.33+-0.14 and [Fe/H](CG)=-0.16+-0.12 using different scales. The best fit to the radial surface brightness profile with a single-mass Kings model yields a core radius rc=0.70 arcmin (0.9pc), tidal radius rt=15 arcmin (20pc), and central oncentration c=1.33. We demonstrate that G02 is new Milky Way globular cluster, among the most metal rich globular clusters in the Galaxy. The object is physically located at the inner edge of the thin disk and the transition region with the bulge, and also falls in the zone of the missing globulars toward the central region of the Milky Way.
42 - J. Borissova 2008
Recent near- and mid-infrared surveys have brought evidence that the Milky Way continues to form massive clusters. We carry out a program to determine the basic physical properties of the new massive cluster candidate [DBS2003]179. Medium-resolution K-band spectra and deep near-infrared images of [DBS2003]179 were used to derive the spectral types of eight member stars, and to estimate the distance and reddening to the cluster. Seven of ten stars with spectra show emission lines. Comparison with template spectra indicated that they are early O-type stars. The mean radial velocity of the cluster is Vrad=-77+-6 km/s. Knowing the spectral types of the members and the color excesses, we determined extinction Av~16.6 and distance modulus (m-M)0~14.5 mag (D~7.9 kpc). The presence of early O-stars and a lack of red supergiants suggests a cluster age of 2-5Myr. The total cluster mass is approximated to 0.7x10^4 Msun and it is not yet dynamically relaxed. The candidate [DBS2003]179 further increases the family of the massive young clusters in the Galaxy, although it appears less massive than the prototypical starburst clusters.
59 - R. Kurtev 2007
Young massive clusters are perfect astrophysical laboratories for study of massive stars. Clusters with Wolf-Rayet (WR) stars are of special importance, since this enables us to study a coeval WR population at a uniform metallicity and known age. GLI MPSE30 (G30) is one of them. The cluster is situated near the Galactic plane (l=298.756deg, b=-0.408deg) and we aimed to determine its physical parameters and to investigate its high-mass stellar content and especially WR stars. Our analysis is based on SOFI/NTT JsHKs imaging and low resolution (R~2000) spectroscopy of the brightest cluster members in the K atmospheric window. For the age determination we applied isochrone fits for MS and Pre-MS stars. We derived stellar parameters of the WR stars candidates using a full nonLTE modeling of the observed spectra. Using a variety of techniques we found that G30 is very young cluster, with age t~4Myr. The cluster is located in Carina spiral arm, it is deeply embedded in dust and suffers reddening of Av~10.5+-1.1mag. The distance to the object is d=7.2+-0.9kpc. The mass of the cluster members down to 2.35Msol is ~1600Msol. Clusters MF for the mass range of 5.6 to 31.6Msol shows a slope of Gamma=-1.01+-0.03. The total mass of the cluster obtained by this MF down to 1Msol is about 3x10^3Msol. The spectral analysis and the models allow us to conclude that in G30 are at least one Ofpe/WN and two WR stars. The WR stars are of WN6-7 hydrogen rich type with progenitor masses more than 60Msol. G30 is a new member of the exquisite family of young Galactic clusters, hosting WR stars. It is a factor of two to three less massive than some of the youngest super-massive star clusters like Arches, Quintuplet and Central cluster and is their smaller analog.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا