ترغب بنشر مسار تعليمي؟ اضغط هنا

Obscured clusters.IV. The most massive stars in [DBS2003]179

35   0   0.0 ( 0 )
 نشر من قبل Radostin Georgiev Kurtev
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. Borissova




اسأل ChatGPT حول البحث

Aims. We report new results for the massive evolved and main sequence members of the young galactic cluster DBS2003 179. We determine the physical parameters and investigate the high-mass stellar content of the cluster, as well as of its close vicinity. Methods. Our analysis is based on ISAAC/VLT moderate-resolution (Rapprox4000) infrared spectroscopy of the brightest cluster members. We derive stellar parameters for sixteen of the stellar members, using full non-LTE modeling of the obtained spectra. Results. The cluster contains three late WN or WR/LBV stars (Obj 4, Obj 15, and Obj 20:MDM32) and at least 5 OIf and 5 OV stars. According to the Hertzsprung-Russell diagram for DBS2003 179, the WR stars show masses above 85Msun, the OIf stars are between 40 and 80Msun, and the main sequence O stars are >20Msun. There are indications of binarity for Obj 4 and Obj 11, and Obj 3 shows a variable spectrum. The cluster is surrounded by a continuous protostar formation region most probably triggered by DBS2003 179. Conclusions. We confirm that DBS2003 179 is young massive cluster (2.5 10^4Msun) very close to the Galactic center at the distance of 7.9+-0.8 kpc.

قيم البحث

اقرأ أيضاً

42 - J. Borissova 2008
Recent near- and mid-infrared surveys have brought evidence that the Milky Way continues to form massive clusters. We carry out a program to determine the basic physical properties of the new massive cluster candidate [DBS2003]179. Medium-resolution K-band spectra and deep near-infrared images of [DBS2003]179 were used to derive the spectral types of eight member stars, and to estimate the distance and reddening to the cluster. Seven of ten stars with spectra show emission lines. Comparison with template spectra indicated that they are early O-type stars. The mean radial velocity of the cluster is Vrad=-77+-6 km/s. Knowing the spectral types of the members and the color excesses, we determined extinction Av~16.6 and distance modulus (m-M)0~14.5 mag (D~7.9 kpc). The presence of early O-stars and a lack of red supergiants suggests a cluster age of 2-5Myr. The total cluster mass is approximated to 0.7x10^4 Msun and it is not yet dynamically relaxed. The candidate [DBS2003]179 further increases the family of the massive young clusters in the Galaxy, although it appears less massive than the prototypical starburst clusters.
Due to their relation to massive stars, long-duration gamma-ray bursts (GRBs) allow pinpointing star formation in galaxies independently of redshift, dust obscuration, or galaxy mass/size, thus providing a unique tool to investigate the star-formatio n history over cosmic time. About half of the optical afterglows of long-duration GRBs are missed due to dust extinction, and are primarily located in the most massive GRB hosts. In order to understand this bias it is important to investigate the amount of obscured star-formation in these GRB host galaxies. Radio emission of galaxies correlates with star-formation, but does not suffer extinction as do the optical star-formation estimators. We selected 11 GRB host galaxies with either large stellar mass or large UV-/optical-based star-formation rates (SFRs) and obtained radio observations of these with the Australia Telescope Compact Array and the Karl Jansky Very Large Array. Despite intentionally selecting GRB hosts with expected high SFRs, we do not find any star-formation-related radio emission in any of our targets. Our upper limit for GRB 100621A implies that the earlier reported radio detection was due to afterglow emission. We do detect radio emission from the position of GRB 020819B, but argue that it is in large parts, if not all, due to afterglow contamination. Half of our sample has radio-derived SFR limits which are only a factor 2--3 above the optically measured SFRs. This supports other recent studies that the majority of star formation in GRB hosts is not obscured by dust.
Highly obscured active galactic nuclei (AGN) are common in nearby galaxies, but are difficult to observe beyond the local Universe, where they are expected to significantly contribute to the black hole accretion rate density. Furthermore, Compton-thi ck (CT) absorbers (NH>10^24 cm^-2) suppress even the hard X-ray (2-10 keV) AGN nuclear emission, and therefore the column density distribution above 10^24 cm^-2 is largely unknown. We present the identification and multi-wavelength properties of a heavily obscured (NH>~10^25 cm^-2), intrinsically luminous (L(2-10keV)>10^44 erg s^-1) AGN at z=0.353 in the COSMOS field. Several independent indicators, such as the shape of the X-ray spectrum, the decomposition of the spectral energy distribution and X-ray/[NeV] and X-ray/6{mu}m luminosity ratios, agree on the fact that the nuclear emission must be suppressed by a 10^25 cm^-2 column density. The host galaxy properties show that this highly obscured AGN is hosted in a massive star-forming galaxy, showing a barred morphology, which is known to correlate with the presence of CT absorbers. Finally, asymmetric and blueshifted components in several optical high-ionization emission lines indicate the presence of a galactic outflow, possibly driven by the intense AGN activity (L(Bol)/L(Edd) = 0.3-0.5). Such highly obscured, highly accreting AGN are intrinsically very rare at low redshift, whereas they are expected to be much more common at the peak of the star formation and BH accretion history, at z~2-3. We demonstrate that a fully multi-wavelength approach can recover a sizable sample of such peculiar sources in large and deep surveys such as COSMOS.
382 - Philip F. Hopkins 2009
At low Eddington ratio (mdot), two effects make it harder to detect AGN given some selection criteria. First, even with fixed accretion physics, AGN are diluted/less luminous relative to their hosts; the magnitude of this depends on host properties a nd so on luminosity and redshift. Second, they may transition to a radiatively inefficient state, changing SED shape and dramatically decreasing in optical/IR luminosity. These effects lead to differences in observed AGN samples, even at fixed bolometric luminosity and after correction for obscuration. The true Eddington ratio distribution may depend strongly on luminosity, but this will be seen only in surveys robust to dilution and radiative inefficiency (X-ray or narrow-line samples); selection effects imply that AGN in optical samples will have uniformly high mdot. This also implies that different selection methods yield systems with different hosts: the clustering of faint optical/IR sources will be weaker than that of X-ray sources, and optical/IR Seyferts will reside in more disk-dominated galaxies while X-ray selected Seyferts will preferentially occupy early-type systems. If observed mdot distributions are correct, a large fraction of low-luminosity AGN currently classified as obscured are in fact diluted and/or radiatively inefficient, not obscured by gas or dust. This is equally true if X-ray hardness is used as a proxy for obscuration, since radiatively inefficient SEDs near mdot~0.01 are X-ray hard. These effects can explain most of the claimed luminosity/redshift dependence in the obscured AGN population, with the true obscured fraction as low as 20%.
223 - F. Martins 2007
We study a sample composed of 28 of the brightest stars in the Arches cluster. We analyze K-band spectra obtained with the integral field spectrograph SINFONI on the VLT. Atmosphere models computed with the code CMFGEN are used to derive the effectiv e temperatures, luminosities, stellar abundances, mass loss rates and wind terminal velocities. We find that the stars in our sample are either H-rich WN7-9 stars (WN7-9h) or O supergiants, two being classified as OIf+. All stars are 2-4 Myr old. There is marginal evidence for a younger age among the most massive stars. The WN7-9h stars reach luminosities as large as 2 x 1e6 Lsun, consistent with initial masses of ~ 120 Msun. They are still quite H-rich, but show both N enhancement and C depletion. They are thus identified as core H-burning objects showing products of the CNO equilibrium at their surface. Their progenitors are most likely supergiants of spectral types earlier than O4-6 and initial masses > 60 Msun. Their winds follow a well defined modified wind momentum - luminosity relation (WLR): this is a strong indication that they are radiatively driven. Stellar abundances tend to favor a slightly super solar metallicity, at least for the lightest metals. We note however that the evolutionary models seem to under-predict the degree of N enrichment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا