ترغب بنشر مسار تعليمي؟ اضغط هنا

The possible existence of eta-nucleus bound states has been put forward through theoretical and experimental studies. It is strongly related to the eta mass at finite density, which is expected to be reduced because of the interplay between the $U_A( 1)$ anomaly and partial restoration of chiral symmetry. The investigation of the C(p,d) reaction at GSI and FAIR, as well as an overview of the experimental program at GSI and future plans at FAIR are discussed.
The mass of the {eta} meson is theoretically expected to be reduced at finite density, which indicates the existence of {eta}-nucleus bound states. To investigate these states, we perform missing-mass spectroscopy for the (p, d) reaction near the {et a} production threshold. The overview of the experimental situation is given and the current status is discussed.
The fragmentation of neutron-rich 132Sn nuclei produced in the fission of 238U projectiles at 950 MeV/u has been investigated at the FRagment Separator (FRS) at GSI. This work represents the first investigation of fragmentation of medium-mass radioac tive projectiles with a large neutron excess. The measured production cross sections of the residual nuclei are relevant for the possible use of a two-stage reaction scheme (fission+fragmentation) for the production of extremely neutron-rich medium-mass nuclei in future rare-ion-beam facilities. Moreover, the new data will provide a better understanding of the memory effect in fragmentation reactions.
The existence of nuclei with exotic combinations of protons and neutrons provides fundamental information on the forces acting between nucleons. The maximum number of neutrons a given number of protons can bind, neutron drip line1, is only known for the lightest chemical elements, up to oxygen. For heavier elements, the larger its atomic number, the farther from this limit is the most neutron-rich known isotope. The properties of heavy neutron-rich nuclei also have a direct impact on understanding the observed abundances of chemical elements heavier than iron in our Universe. Above half of the abundances of these elements are thought to be produced in rapid-neutron capture reactions, r-process, taking place in violent stellar scenarios2 where heavy neutron-rich nuclei, far beyond the ones known up today, are produced. Here we present a major step forward in the production of heavy neutron-rich nuclei: the discovery of 73 new neutron-rich isotopes of chemical elements between tantalum (Z=72) and actinium (Z=89). This result proves that cold-fragmentation reactions3 at relativistic energies are governed by large fluctuations in isospin and energy dissipation making possible the massive production of heavy neutron-rich nuclei, paving then the way for the full understanding of the origin of the heavier elements in our Universe. It is expected that further studies providing ground and structural properties of the nuclei presented here will reveal further details on the nuclear shell evolution along Z=82 and N=126, but also on the understanding of the stellar nucleosyntheis r-process around the waiting point at A~190 defining the speed of the matter flow towards heavier fissioning nuclei.
Production cross sections of medium-mass neutron-rich nuclei obtained in the fragmentation of 136Xe projectiles at 1 A GeV have been measured with the FRagment Separator (FRS) at GSI. 125Pd was identified for the first time. The measured cross sectio ns are compared to 238U fission yields and model calculations in order to determine the optimum reaction mechanism to extend the limits of the chart of the nuclides around the r-process waiting point at N=82.
Heavy neutron-rich nuclei close to N=126 were produced by fragmentation of a 1 A GeV 208Pb beam at the FRS at GSI. The beta-decay half-lives of 8 nuclides have been determined. The comparison of the data with model calculations including an approach based on the self-consistent ground-state description and continuum QRPA considering the Gamow-Teller and first-forbidden decays provide a first indication on the importance of first-forbidden transitions around A=195. The measured data indicate that the matter flow in the r-process to heavier fissioning nuclei is faster than previously expected.
This paper reports the first application of a new technique to measure the beta-decay half -lives of exotic nuclei in complex background conditions. Since standard tools were not adapted to extract the relevant information, a new analysis method was developed. The time distribution of background events is established by recording time correlations in backward time. The beta half lives of the nuclides and the detection efficiency of the set-up are determined simultaneously from a least-squares fit of the ratio of the time-correlation spectra recorded in forward and in backward time, using numerical functions. The necessary numerical functions are calculated in a Monte-Carlo code using the known operation parameters of the experiment and different values for the two free parameters, half-life and detection efficiency, as input parameters.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا