ترغب بنشر مسار تعليمي؟ اضغط هنا

Production of neutron-rich nuclei in fragmentation reactions of 132Sn projectiles at relativistic energies

89   0   0.0 ( 0 )
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The fragmentation of neutron-rich 132Sn nuclei produced in the fission of 238U projectiles at 950 MeV/u has been investigated at the FRagment Separator (FRS) at GSI. This work represents the first investigation of fragmentation of medium-mass radioactive projectiles with a large neutron excess. The measured production cross sections of the residual nuclei are relevant for the possible use of a two-stage reaction scheme (fission+fragmentation) for the production of extremely neutron-rich medium-mass nuclei in future rare-ion-beam facilities. Moreover, the new data will provide a better understanding of the memory effect in fragmentation reactions.

قيم البحث

اقرأ أيضاً

An exponential dependence of the fragmentation cross-section on the average binding energy is observed and reproduced with a statistical model. The observed functional dependence is robust and allows the extraction of binding energies from measured c ross-sections. From the systematics of 75,77,78,79Cu isotope cross-sections have been extracted. They are 636.94 +/- 0.40 MeV, 647.1 +/- 0.4 MeV, 651.6 +/- 0.4 MeV and 657.8 +/- 0.5 MeV, respectively. Specifically, the uncertainty of the binding energy of 75Cu is reduced from 980 keV (listed value in the 2003 mass table of Audi and Wapstra) to 400 keV. The predicted cross-sections of two near drip-line nuclei, 39Na and 40Mg, from the fragmentation of 48Ca are discussed.
Production cross sections of medium-mass neutron-rich nuclei obtained in the fragmentation of 136Xe projectiles at 1 A GeV have been measured with the FRagment Separator (FRS) at GSI. 125Pd was identified for the first time. The measured cross sectio ns are compared to 238U fission yields and model calculations in order to determine the optimum reaction mechanism to extend the limits of the chart of the nuclides around the r-process waiting point at N=82.
Above-barrier fusion cross-sections for an isotopic chain of oxygen isotopes with A=16-19 incident on a $^{12}$C target are presented. Experimental data are compared with both static and dynamical microscopic calculations. These calculations are unab le to explain the $sim$37% increase in the average above-barrier fusion cross-section observed for $^{19}$O as compared to $beta$-stable oxygen isotopes. This result suggests that for neutron-rich nuclei existing time-dependent Hartree-Fock calculations underpredict the role of dynamics at near-barrier energies. High-quality measurement of above-barrier fusion for an isotopic chain of increasingly neutron-rich nuclei provides an effective means to probe this fusion dynamics.
Multi-fragment decays of 129Xe, 197Au, and 238U projectiles in collisions with Be, C, Al, Cu, In, Au, and U targets at energies between E/A = 400 MeV and 1000 MeV have been studied with the ALADIN forward-spectrometer at SIS. By adding an array of 84 Si-CsI(Tl) telescopes the solid-angle coverage of the setup was extended to theta_lab = 16 degree. This permitted the complete detection of fragments from the projectile-spectator source. The dominant feature of the systematic set of data is the Z_bound universality that is obeyed by the fragment multiplicities and correlations. These observables are invariant with respect to the entrance channel if plotted as a function of Z_bound, where Z_bound is the sum of the atomic numbers Z_i of all projectile fragments with Z_i geq 2. No significant dependence on the bombarding energy nor on the target mass is observed. The dependence of the fragment multiplicity on the projectile mass follows a linear scaling law. The reasons for and the limits of the observed universality of spectator fragmentation are explored within the realm of the available data and with model studies. It is found that the universal properties should persist up to much higher bombarding energies than explored in this work and that they are consistent with universal features exhibited by the intranuclear cascade and statistical multifragmentation models. PACS numbers: 25.70.Mn, 25.70.Pq, 25.75.-q
A systematic study of high energy, one-neutron removal reactions on 23 neutron-rich, psd--shell nuclei (Z=5-9, A=12-25) has been carried out. The longitudinal momentum distributions of the core fragments and corresponding single-neutron removal cross sections are reported for reactions on a carbon target. Extended Glauber model calculations, weighted by the spectroscopic factors obtained from shell model calculations, are compared to the experimental results. Conclusions are drawn regarding the use of such reactions as a spectroscopic tool and spin-parity assignments are proposed for 15B, 17C, 19-21N, 21,23O, 23-25F. The nature of the weakly bound systems 14B and 15,17C is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا