ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermal images of cold dust in the Central Molecular Zone of the Milky Way, obtained with the far-infrared cameras on-board the Herschel satellite, reveal a 3x10^7 solar masses ring of dense and cold clouds orbiting the Galactic Center. Using a simpl e toy-model, an elliptical shape having semi-major axes of 100 and 60 parsecs is deduced. The major axis of this 100-pc ring is inclined by about 40 degrees with respect to the plane-of-the-sky and is oriented perpendicular to the major axes of the Galactic Bar. The 100-pc ring appears to trace the system of stable x_2 orbits predicted for the barred Galactic potential. Sgr A* is displaced with respect to the geometrical center of symmetry of the ring. The ring is twisted and its morphology suggests a flattening-ratio of 2 for the Galactic potential, which is in good agreement with the bulge flattening ratio derived from the 2MASS data.
Aims: To explore the infrared and radio properties of one of the closest Galactic starburst regions. Methods: Images obtained with the Herschel Space Observatory at wavelengths of 70, 160, 250, 350, and 500 microns using the PACS and SPIRE arrays are analyzed and compared with radio continuum VLA data and 8 micron images from the Spitzer Space Telescope. The morphology of the far-infrared emission is combined with radial velocity measurements of millimeter and centimeter wavelength transitions to identify features likely to be associated with the W43 complex. Results: The W43 star-forming complex is resolved into a dense cluster of protostars, infrared dark clouds, and ridges of warm dust heated by massive stars. The 4 brightest compact sources with L > 1.5 x 10^4 Lsun embedded within the Z-shaped ridge of bright dust emission in W43 remain single at 4 (0.1 pc) resolution. These objects, likely to be massive protostars or compact clusters in early stages of evolution are embedded in clumps with masses of 10^3 to 10^4 Msun, but contribute only 2% to the 3.6 x 10^6 Lsun far-IR luminosity of W43 measured in a 16 by 16 pc box. The total mass of gas derived from the far-IR dust emission inside this region is ~10^6 Msun. Cometary dust clouds, compact 6 cm radio sources, and warm dust mark the locations of older populations of massive stars. Energy release has created a cavity blowing-out below the Galactic plane. Compression of molecular gas in the plane by the older HII region near G30.684-0.260 and the bipolar structure of the resulting younger W43 HII region may have triggered the current mini-star burst.
We present the first results from the science demonstration phase for the Hi-GAL survey, the Herschel key-project that will map the inner Galactic Plane of the Milky Way in 5 bands. We outline our data reduction strategy and present some science high lights on the two observed 2{deg} x 2{deg} tiles approximately centered at l=30{deg} and l=59{deg}. The two regions are extremely rich in intense and highly structured extended emission which shows a widespread organization in filaments. Source SEDs can be built for hundreds of objects in the two fields, and physical parameters can be extracted, for a good fraction of them where the distance could be estimated. The compact sources (which we will call cores in the following) are found for the most part to be associated with the filaments, and the relationship to the local beam-averaged column density of the filament itself shows that a core seems to appear when a threshold around A_V of about 1 is exceeded for the regions in the l=59{deg} field; a A_V value between 5 and 10 is found for the l=30{deg} field, likely due to the relatively larger distances of the sources. This outlines an exciting scenario where diffuse clouds first collapse into filaments, which later fragment to cores where the column density has reached a critical level. In spite of core L/M ratios being well in excess of a few for many sources, we find core surface densities between 0.03 and 0.5 g cm-2. Our results are in good agreement with recent MHD numerical simulations of filaments forming from large-scale converging flows.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا