ترغب بنشر مسار تعليمي؟ اضغط هنا

Herschel Observations of the W43 mini-starburst

158   0   0.0 ( 0 )
 نشر من قبل Cara Battersby
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Aims: To explore the infrared and radio properties of one of the closest Galactic starburst regions. Methods: Images obtained with the Herschel Space Observatory at wavelengths of 70, 160, 250, 350, and 500 microns using the PACS and SPIRE arrays are analyzed and compared with radio continuum VLA data and 8 micron images from the Spitzer Space Telescope. The morphology of the far-infrared emission is combined with radial velocity measurements of millimeter and centimeter wavelength transitions to identify features likely to be associated with the W43 complex. Results: The W43 star-forming complex is resolved into a dense cluster of protostars, infrared dark clouds, and ridges of warm dust heated by massive stars. The 4 brightest compact sources with L > 1.5 x 10^4 Lsun embedded within the Z-shaped ridge of bright dust emission in W43 remain single at 4 (0.1 pc) resolution. These objects, likely to be massive protostars or compact clusters in early stages of evolution are embedded in clumps with masses of 10^3 to 10^4 Msun, but contribute only 2% to the 3.6 x 10^6 Lsun far-IR luminosity of W43 measured in a 16 by 16 pc box. The total mass of gas derived from the far-IR dust emission inside this region is ~10^6 Msun. Cometary dust clouds, compact 6 cm radio sources, and warm dust mark the locations of older populations of massive stars. Energy release has created a cavity blowing-out below the Galactic plane. Compression of molecular gas in the plane by the older HII region near G30.684-0.260 and the bipolar structure of the resulting younger W43 HII region may have triggered the current mini-star burst.



قيم البحث

اقرأ أيضاً

Context: Star formation efficiency (SFE) theories are currently based on statistical distributions of turbulent cloud structures and a simple model of star formation from cores. They remain poorly tested, especially at the highest densities. Aims: We investigate the effects of gas density on the SFE through measurements of the core formation efficiency (CFE). With a total mass of $sim2times10^4$ M$_odot$, the W43-MM1 ridge is one of the most convincing candidate precursor of starburst clusters and thus one of the best place to investigate star formation. Methods: We used high-angular resolution maps obtained at 3 mm and 1 mm within W43-MM1 with the IRAM Plateau de Bure Interferometer to reveal a cluster of 11 massive dense cores (MDCs), and, one of the most massive protostellar cores known. An Herschel column density image provided the mass distribution of the cloud gas. We then measured the instantaneous CFE and estimated the SFE and the star formation rate (SFR) within subregions of the W43-MM1 ridge. Results: The high SFE found in the ridge ($sim$6% enclosed in $sim$8 pc$^3$) confirms its ability to form a starburst cluster. There is however a clear lack of dense cores in the northern part of the ridge, which may be currently assembling. The CFE and the SFE are observed to increase with volume gas density while the SFR steeply decreases with the virial parameter, $alpha_{vir}$. Statistical models of the SFR may well describe the outskirts of the W43-MM1 ridge but struggle to reproduce its inner part, which corresponds to measurements at low $alpha_{vir}$. It may be that ridges do not follow the log-normal density distribution, Larson relations, and stationary conditions forced in the statistical SFR models.
We present rest-frame optical spectra from the FMOS-COSMOS survey of twelve $z sim 1.6$ textit{Herschel} starburst galaxies, with Star Formation Rate (SFR) elevated by $times$8, on average, above the star-forming Main Sequence (MS). Comparing the H$a lpha$ to IR luminosity ratio and the Balmer Decrement we find that the optically-thin regions of the sources contain on average only $sim 10$ percent of the total SFR whereas $sim90$ percent comes from an extremely obscured component which is revealed only by far-IR observations and is optically-thick even in H$alpha$. We measure the [NII]$_{6583}$/H$alpha$ ratio, suggesting that the less obscured regions have a metal content similar to that of the MS population at the same stellar masses and redshifts. However, our objects appear to be metal-rich outliers from the metallicity-SFR anticorrelation observed at fixed stellar mass for the MS population. The [SII]$_{6732}$/[SII]$_{6717}$ ratio from the average spectrum indicates an electron density $n_{rm e} sim 1,100 mathrm{cm}^{-3}$, larger than what estimated for MS galaxies but only at the 1.5$sigma$ level. Our results provide supporting evidence that high-$z$ MS outliers are the analogous of local ULIRGs, and are consistent with a major merger origin for the starburst event.
The filament IRDC G035.39--00.33 in the W48 molecular complex is one of the darkest infrared clouds observed by textit{Spitzer}. It has been observed by the PACS (70 and 160,$micron$) and SPIRE (250, 350, and 500,$micron$) cameras of the textit{Hersc hel} Space Observatory as part of the W48 molecular cloud complex in the framework of the HOBYS key programme. The observations reveal a sample of 28 compact sources (deconvolved FWHM sizes $<$0.3 pc) complete down to $sim$$5 msun$ in G035.39--00.33 and its surroundings. Among them, 13 compact sources are massive dense cores with masses $>$$20 msun$. The cloud characteristics we derive from the analysis of their spectral energy distributions are masses of $20-50 msun$, sizes of 0.1--0.2 pc, and average densities of $2-20 times 10^{5} cmc$, which make these massive dense cores excellent candidates to form intermediate- to high-mass stars. Most of the massive dense cores are located inside the G035.39--00.33 ridge and host IR-quiet high-mass protostars. The large number of protostars found in this filament suggests that we are witnessing a mini-burst of star formation with an efficiency of $sim$15% and a rate density of $sim$$40 msun,$yr$^{-1},$kpc$^{-2}$ within $sim$8 pc$^2$, a large area covering the full ridge. Part of the extended SiO emission observed towards G035.39--00.33 is not associated with obvious protostars and may originate from low-velocity shocks within converging flows, as advocated by previous studies.
139 - David A. Neufeld 2012
Using the Herschel Space Observatorys Heterodyne Instrument for the Far-Infrared (HIFI), we have observed para-chloronium (H2Cl+) toward six sources in the Galaxy. We detected interstellar chloronium absorption in foreground molecular clouds along th e sight-lines to the bright submillimeter continuum sources Sgr A (+50 km/s cloud) and W31C. Both the para-H2-35Cl+ and para-H2-37Cl+ isotopologues were detected, through observations of their 1(11)-0(00) transitions at rest frequencies of 485.42 and 484.23 GHz, respectively. For an assumed ortho-to-para ratio of 3, the observed optical depths imply that chloronium accounts for ~ 4 - 12% of chlorine nuclei in the gas phase. We detected interstellar chloronium emission from two sources in the Orion Molecular Cloud 1: the Orion Bar photodissociation region and the Orion South condensation. For an assumed ortho-to-para ratio of 3 for chloronium, the observed emission line fluxes imply total beam-averaged column densities of ~ 2.0E+13 cm-2 and ~ 1.2E+13 cm-2, respectively, for chloronium in these two sources. We obtained upper limits on the para-H2-35Cl+ line strengths toward H2 Peak 1 in the Orion Molecular cloud and toward the massive young star AFGL 2591. The chloronium abundances inferred in this study are typically at least a factor ~10 larger than the predictions of steady-state theoretical models for the chemistry of interstellar molecules containing chlorine. Several explanations for this discrepancy were investigated, but none has proven satisfactory, and thus the large observed abundances of chloronium remain puzzling.
We present Herschel/HIFI observations of fourteen water lines in W43-MM1, a massive protostellar object in the luminous star cluster-forming region W43. We analyze the gas dynamics from the line profiles using Herschel-HIFI observations (WISH-KP) of fourteen far-IR water lines (H2O, H217O, H218O), CS(11-10), and C18O(9-8) lines, and using our modeling of the continuum spectral energy distribution. As for lower mass protostellar objects, the molecular line profiles are a mix of emission and absorption, and can be decomposed into medium, and broad velocity components. The broad component is the outflow associated with protostars of all masses. Our modeling shows that the remainder of the water profiles can be well fitted by an infalling and passively heated envelope, with highly supersonic turbulence varying from 2.2 km/s in the inner region to 3.5 km/s in the outer envelope. Also, W43-MM1 has a high accretion rate, between 4.0 x 10^{-4} and 4.0 x 10^{-2} msun /yr, derived from the fast (0.4-2.9 km/s) infall observed. We estimate a lower mass limit of gaseous water of 0.11 msun and total water luminosity of 1.5 lsun (in the 14 lines presented here). The central hot core is detected with a water abundance of 1.4 x 10^{-4} while the water abundance for the outer envelope is 8 x10^{-8}. The latter value is higher than in other sources, most likely related to the high turbulence and the micro-shocks created by its dissipation. Examining water lines of various energies, we find that the turbulent velocity increases with the distance to the center. While not in clear disagreement with the competitive accretion scenario, this behavior is predicted by the turbulent core model. Moreover, the estimated accretion rate is high enough to overcome the expected radiation pressure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا