ترغب بنشر مسار تعليمي؟ اضغط هنا

The Square Kilometre Array (SKA) will transform our understanding of the role of the cold, atomic gas in galaxy evolution. The interstellar medium (ISM) is the repository of stellar ejecta and the birthsite of new stars and, hence, a key factor in th e evolution of galaxies over cosmic time. Cold, diffuse, atomic clouds are a key component of the ISM, but so far this phase has been difficult to study, because its main tracer, the HI 21 cm line, does not constrain the basic physical information of the gas (e.g., temperature, density) well. The SKA opens up the opportunity to study this component of the ISM through a complementary tracer in the form of low-frequency (<350 MHz) carbon radio recombination lines (CRRL). These CRRLs provide a sensitive probe of the physical conditions in cold, diffuse clouds. The superb sensitivity, large field of view, frequency resolution and coverage of the SKA allows for efficient surveys of the sky, that will revolutionize the field of low-frequency recombination line studies. By observing these lines with the SKA we will be able determine the thermal balance, chemical enrichment, and ionization rate of the cold, atomic medium from degree-scales down to scales corresponding to individual clouds and filaments in our Galaxy, the Magellanic Clouds and beyond. Furthermore, being sensitive only to the cold, atomic gas, observations of low-frequency CRRLs with the SKA will aid in disentangling the warm and cold constituents of the HI 21 cm emission.
Cassiopeia A was observed using the Low-Band Antennas of the LOw Frequency ARray (LOFAR) with high spectral resolution. This allowed a search for radio recombination lines (RRLs) along the line-of-sight to this source. Five carbon-alpha RRLs were det ected in absorption between 40 and 50 MHz with a signal-to-noise ratio of > 5 from two independent LOFAR datasets. The derived line velocities (v_LSR ~ -50 km/s) and integrated optical depths (~ 13 s^-1) of the RRLs in our spectra, extracted over the whole supernova remnant, are consistent within each LOFAR dataset and with those previously reported. For the first time, we are able to extract spectra against the brightest hotspot of the remnant at frequencies below 330 MHz. These spectra show significantly higher (15-80 %) integrated optical depths, indicating that there is small-scale angular structure on the order of ~1 pc in the absorbing gas distribution over the face of the remnant. We also place an upper limit of 3 x 10^-4 on the peak optical depths of hydrogen and helium RRLs. These results demonstrate that LOFAR has the desired spectral stability and sensitivity to study faint recombination lines in the decameter band.
The dust destruction timescales in the cores of clusters of galaxies are relatively short given their high central gas densities. However, substantial mid-infrared and sub-mm emission has been detected in many brightest cluster galaxies. In this lett er we present Herschel PACS and SPIRE photometry of the brightest cluster galaxy in three strong cooling flow clusters, A1068, A2597 and Zw3146. This photometry indicates that a substantial mass of cold dust is present (>3 x 10^7 Mo) at temperatures significantly lower (20-28K) than previously thought based on limited MIR and/or sub-mm results. The mass and temperature of the dust appear to match those of the cold gas traced by CO with a gas-to-dust ratio of 80-120.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا