ترغب بنشر مسار تعليمي؟ اضغط هنا

85 - J. Colgan , J. Abdallah , Jr. 2012
The properties of high energy density plasma are under increasing scrutiny in recent years due to their importance to our understanding of stellar interiors, the cores of giant planets$^{1}$, and the properties of hot plasma in inertial confinement f usion devices$^2$. When matter is heated by X-rays, electrons in the inner shells are ionized before the valence electrons. Ionization from the inside out creates atoms or ions with empty internal electron shells, which are known as hollow atoms (or ions)$^{3,4,5}$. Recent advances in free-electron laser (FEL) technology$^{6,7,8,9}$ have made possible the creation of condensed matter consisting predominantly of hollow atoms. In this Letter, we demonstrate that such exotic states of matter, which are very far from equilibrium, can also be formed by more conventional optical laser technology when the laser intensity approaches the radiation dominant regime$^{10}$. Such photon-dominated systems are relevant to studies of photoionized plasmas found in active galactic nuclei and X-ray binaries$^{11}$. Our results promote laser-produced plasma as a unique ultra-bright x-ray source for future studies of matter in extreme conditions as well as for radiography of biological systems and for material science studies$^{12,13,14,15}$.
The nature of b-quark jet hadronisation has been investigated using data taken at the Z peak by the DELPHI detector at LEP. Two complementary methods are used to reconstruct the energy of weakly decaying b-hadrons, E^weak_B. The average value of x^we ak_B = E^weak_B/E_beam is measured to be 0.699 +/- 0.011. The resulting x^weak_B distribution is then analysed in the framework of two choices for the perturbative contribution (parton shower and Next to Leading Log QCD calculation) in order to extract measurements of the non-perturbative contribution to be used in studies of b-hadron production in other experimental environments than LEP. In the parton shower framework, data favour the Lund model ansatz and corresponding values of its parameters have been determined within PYTHIA~6.156 from DELPHI data: a= 1.84^{+0.23}_{-0.21} and b=0.642^{+0.073}_{-0.063} GeV^-2, with a correlation factor rho = 92.2%. Combining the data on the b-quark fragmentation distributions with those obtained at the Z peak by ALEPH, OPAL and SLD, the average value of x^weak_B is found to be 0.7092 +/- 0.0025 and the non-perturbative fragmentation component is extracted. Using the combined distribution, a better determination of the Lund parameters is also obtained: a= 1.48^{+0.11}_{-0.10} and b=0.509^{+0.024}_{-0.023} GeV^-2, with a correlation factor rho = 92.6%.
Single top quark production via four-fermion contact interactions associated to flavour-changing neutral currents was searched for in data taken by the DELPHI detector at LEP2. The data were accumulated at centre-of-mass energies ranging from 189 to 209 GeV, with an integrated luminosity of 598.1 pb^-1. No evidence for a signal was found. Limits on the energy scale Lambda, were set for scalar-, vector- and tensor-like coupling scenarios.
An analysis of the direct soft photon production rate as a function of the parent jet characteristics is presented, based on hadronic events collected by the DELPHI experiment at LEP1. The dependences of the photon rates on the jet kinematic characte ristics (momentum, mass, etc.) and on the jet charged, neutral and total hadron multiplicities are reported. Up to a scale factor of about four, which characterizes the overall value of the soft photon excess, a similarity of the observed soft photon behaviour to that of the inner hadronic bremsstrahlung predictions is found for the momentum, mass, and jet charged multiplicity dependences. However for the dependence of the soft photon rate on the jet neutral and total hadron multiplicities a prominent difference is found for the observed soft photon signal as compared to the expected bremsstrahlung from final state hadrons. The observed linear increase of the soft photon production rate with the jet total hadron multiplicity and its strong dependence on the jet neutral multiplicity suggest that the rate is proportional to the number of quark pairs produced in the fragmentation process, with the neutral pairs being more effectively radiating than the charged ones.
The data taken by DELPHI at centre-of-mass energies between 189 and 209 GeV are used to place limits on the CP-conserving trilinear gauge boson couplings Delta_g1z, lambda_gamma and Delta_kappag associated to W+W- and single W production at LEP2. Usi ng data from the jjlv, jjjj, jjX and lX final states, where j, l and X represent a jet, a lepton and missing four-momentum, respectively, the following limits are set on the couplings when one parameter is allowed to vary and the others are set to their Standard Model values of zero: Delta_g1z = -0.025^{+0.033}_{-0.030}, lambda_gamma = 0.002^{+0.035}_{-0.035} and Delta_kappag = 0.024^{+0.077}_{-0.081} . Results are also presented when two or three parameters are allowed to vary. All observations are consistent with the predictions of the Standard Model and supersede the previous results on these gauge coupling parameters published by DELPHI.
In a study of the reaction e-e+ -> W-W+ with the DELPHI detector, the probabilities of the two W particles occurring in the joint polarisation states transverse-transverse (TT), longitudinal-transverse plus transverse-longitudinal (LT) and longitudin al-longitudinal (LL) have been determined using the final states WW -> l nu q qbar (l = e, mu). The two-particle joint polarisation probabilities, i.e. the spin density matrix elements rho_TT, rho_LT, rho_LL, are measured as functions of the W- production angle, theta_W-, at an average reaction energy of 198.2 GeV. Averaged over all cos(theta_W-), the following joint probabilities are obtained: rho_TT = (67 +/- 8)%, rho_LT = (30 +/- 8)%, rho_LL = (3 +/- 7)% . These results are in agreement with the Standard Model predictions of 63.0%, 28.9% and 8.1%, respectively. The related polarisation cross-sections sigma_TT, sigma_LT and sigma_LL are also presented.
A study of the inclusive charged hadron production in two-photon collisions is described. The data were collected with the DELPHI detector at LEP II. Results on the inclusive single-particle p_T distribution and the differential charged hadrons dsigm a/dp_T cross-section are presented and compared to the predictions of perturbative NLO QCD calculations and to published results.
The production of two high-p_T jets in the interactions of quasi-real photons in e+e- collisions at sqrt{s_ee} from 189 GeV to 209 GeV is studied with data corresponding to an integrated e+e- luminosity of 550 pb^{-1}. The jets reconstructed by the k _T cluster algorithm are defined within the pseudo-rapidity range -1 < eta < 1 and with jet transverse momentum, p_T, above 3 GeV/c. The differential di-jet cross-section is measured as a function of the mean transverse momentum ptmean of the jets and is compared to perturbative QCD calculations.
Muon bremsstrahlung photons converted in front of the DELPHI main tracker (TPC) in dimuon events at LEP1 were studied in two photon kinematic ranges: 0.2 < E_gamma <= 1 GeV and transverse momentum with respect to the parent muon p_T < 40 MeV/c, and 1 < E_gamma <= 10 GeV and p_T < 80 MeV/c . A good agreement of the observed photon rate with predictions from QED for the muon inner bremsstrahlung was found, contrary to the anomalous soft photon excess that has been observed recently in hadronic Z^0 decays. The obtained ratios of the observed signal to the predicted level of the muon bremsstrahlung are 1.06 +/- 0.12 +/- 0.07 in the photon energy range 0.2 < E_gamma <= 1 GeV and 1.04 +/- 0.09 +/- 0.12 in the photon energy range 1 < E_gamma <= 10 GeV. The bremsstrahlung dead cone is observed for the first time in the direct photon production at LEP.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا