ترغب بنشر مسار تعليمي؟ اضغط هنا

114 - J. A. Noble , C. Dedonder , 2015
Aims. This study was designed to examine the viability of protonated nitrogen-substituted polycyclic aromatic hydrocarbons (H+PANHs) as candidates for the carriers of the diffuse interstellar bands (DIBs). Methods. We obtained the electronic spectra of two protonated PANH cations, protonated acridine and phenanthridine, using parent ion photo-fragment spectroscopy and generated theoretical electronic spectra using ab initio calculations. Results. We show that the spectra of the two species studied here do not correspond to known DIBs. However, based on the general properties derived from the spectra of these small protonated nitrogen-substituted PAHs, we propose that larger H+PANH cations represent good candidates for DIB carriers due to the expected positions of their electronic transitions in the UV-visible and their narrow spectral bands.
Context. It is generally agreed that hydrogenation reactions dominate chemistry on grain surfaces in cold, dense molecular cores, saturating the molecules present in ice mantles. Aims. We present a study of the low temperature reactivity of solid pha se isocyanic acid (HNCO) with hydrogen atoms, with the aim of elucidating its reaction network. Methods. Fourier transform infrared spectroscopy and mass spectrometry were employed to follow the evolution of pure HNCO ice during bombardment with H atoms. Both multilayer and monolayer regimes were investigated. Results. The hydrogenation of HNCO does not produce detectable amounts of formamide (NH2CHO) as the major product. Experiments using deuterium reveal that deuteration of solid HNCO occurs rapidly, probably via cyclic reaction paths regenerating HNCO. Chemical desorption during these reaction cycles leads to loss of HNCO from the surface. Conclusions. It is unlikely that significant quantities of NH2CHO form from HNCO. In dense regions, however, deuteration of HNCO will occur. HNCO and DNCO will be introduced into the gas phase, even at low temperatures, as a result of chemical desorption.
HCN is a molecule central to interstellar chemistry, since it is the simplest molecule containing a carbon-nitrogen bond and its solid state chemistry is rich. The aim of this work was to study the NH3 + HCN -> NH4+CN- thermal reaction in interstella r ice analogues. Laboratory experiments based on Fourier transform infrared spectroscopy and mass spectrometry were performed to characterise the NH4+CN- reaction product and its formation kinetics. This reaction is purely thermal and can occur at low temperatures in interstellar ices without requiring non-thermal processing by photons, electrons or cosmic rays. The reaction rate constant has a temperature dependence of k(T) = 0.016+0.010-0.006 s-1.exp((-2.7+-0.4 kJmol-1)/(RT)) when NH3 is much more abundant than HCN. When both reactants are diluted in water ice, the reaction is slowed down. We have estimated the CN- ion band strength to be A_CN- = 1.8+-1.5 x10-17 cm molec-1 at both 20 K and 140 K. NH4+CN- exhibits zeroth-order multilayer desorption kinetics with a rate of k_des(T) = 10^28 molecules cm-2 s-1.exp((-38.0+-1.4 kJmol-1)/(RT)). The NH3 + HCN -> NH4+CN- thermal reaction is of primary importance because (i) it decreases the amount of HCN available to be hydrogenated into CH2NH, (ii) the NH4+ and CN- ions react with species such as H2CO, or CH2NH to form complex molecules, and (iii) NH4+CN- is a reservoir of NH3 and HCN, which can be made available to a high temperature chemistry.
The desorption characteristics of molecules on interstellar dust grains are important for modelling the behaviour of molecules in icy mantles and, critically, in describing the solid-gas interface. In this study, a series of laboratory experiments ex ploring the desorption of three small molecules from three astrophysically relevant surfaces are presented. The desorption of CO, O2 and CO2 at both sub-monolayer and multilayer coverages was investigated from non-porous water, crystalline water and silicate surfaces. Experimental data was modelled using the Polanyi-Wigner equation to produce a mathematical description of the desorption of each molecular species from each type of surface, uniquely describing both the monolayer and multilayer desorption in a single combined model. The implications of desorption behaviour over astrophysically relevant timescales are discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا