ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the dependence on the quark mass of the compositeness of the lowest-lying odd parity hyperon states. Thus, we pay attention to $Lambda-$like states in the strange, charm and beauty, sectors which are dynamically generated using a unitarized meson-baryon model. In the strange sector we use an SU(6) extension of the Weinberg-Tomozawa meson-baryon interaction, and we further implement the heavy-quark spin symmetry to construct the meson-baryon interaction when charmed or beauty hadrons are involved. In the three examined flavor sectors, we obtain two $J^P=1/2^-$ and one $J^P=3/2^-$ $Lambda$ states. We find that the $Lambda$ states which are bound states (the three $Lambda_b$) or narrow resonances (one $Lambda(1405)$ and one $Lambda_c(2595)$) are well described as molecular states composed of $s$-wave meson-baryon pairs. The $frac{1}{2}^-$ wide $Lambda(1405)$ and $Lambda_c(2595)$ as well as the $frac{3}{2}^-$ $Lambda(1520)$ and $Lambda_c(2625)$ states display smaller compositeness and so they would require new mechanisms, such as $d$-wave interactions.
We review our theoretical approach to neutral current photon emission on nucleons and nuclei in the few-GeV energy region, relevant for neutrino oscillation experiments. These reactions are dominated by the weak excitation of the $Delta(1232)$ resona nce but there are also important non-resonant contributions. We have also included terms mediated by nucleon excitations from the second resonance region. On nuclei, Pauli blocking, Fermi motion and the in-medium $Delta$ resonance broadening have been taken into account for both incoherent and coherent reaction channels. With this model, the number and distributions of photon events at the MiniBooNE and T2K experiments have been obtained. We have also compared to the NOMAD upper limit at higher energies. The implications of our findings and future perspectives are discussed.
We investigate heavy quark symmetries for heavy light meson-antimeson systems in a contact-range effective field theory. In the SU(3) light flavor limit, the leading order Lagrangian respecting heavy quark spin symmetry contains four independent coun ter-terms. Neglecting $1/m_Q$ corrections, three of these low energy constants can be determ1ined by theorizing a molecular description of the $X(3872)$ and $Z_b(10610)$ states. Thus, we can predict new hadronic molecules, in particular the isovector charmonium partners of the $Z_b(10610)$ and the $Z_b(10650)$ states. We also discuss hadron molecules composed of a heavy meson and a doubly-heavy baryon, which would be related to the heavy meson-antimeson molecules thanks to the heavy antiquark-diquark symmetry. Finally, we also study the $X(3872) to D^0bar D^0pi^0$ decay, which is not only sensitive to the short distance part of the $X(3872)$ molecular wave function, as the $J/psipipi$ and $J/psi3pi$ $X(3872)$ decay modes are, but it is also affected by the long-distance structure of the resonance. Furthermore, this decay might provide some information on the interaction between the $Dbar D$ charm mesons.
119 - J. Nieves , R. Gran , I. Ruiz Simo 2014
RPA correlations, spectral function and 2p2h (multi-nucleon) effects on charged-current neutrino-nucleus reactions without emitted pions are discussed. We pay attention to the influence of RPA and multi-nucleon mechanisms on the MiniBooNE and MINERvA flux folded differential cross sections, the MiniBooNE flux unfolded total cross section and the neutrino energy reconstruction.
In this contribution we compute some nonleptonic and semileptonic decay widths of $B_s$ mesons, working in the context of constituent quark models cite{Albertus:2014gba, Albertus:2014bfa}. For the case of semileptonic decays we consider reactions lea ding to kaons or different $J^pi$ $D_s$ mesons. The study of nonleptonic decays has been done in the factorisation approximation and includes the final states enclosed in Table 2.
We investigate heavy quark symmetries for heavy meson hadronic molecules, and explore the consequences of assuming the X(3872) and $Z_b(10610)$ as an isoscalar $Dbar D^*$ and an isovector $Bbar B^*$ hadronic molecules, respectively. The symmetry allo ws to predict new hadronic molecules, in particular we find an isoscalar $1^{++}$ $Bbar B^*$ bound state with a mass about 10580 MeV and the isovector charmonium partners of the $Z_b(10610)$ and the $Z_b(10650)$ states. Next, we study the $X(3872) to D^0 bar D^0pi^0$ three body decay. This decay mode is more sensitive to the long-distance structure of the X(3872) resonance than its $J/psipipi$ and $J/psi3pi$ decays, which are mainly controlled by the short distance part of the X(3872) molecular wave function. We discuss the $D^0 bar D^0$ final state interactions, which in some situations become quite important. Indeed in these cases, a precise measurement of this partial decay width could provide precise information on the interaction strength between the $D^{(*)}bar D^{(*)}$ charm mesons.
In the present paper we address the interaction of charmed mesons in hidden charm channels in a finite box. We use the interaction from a recent model based on heavy quark spin symmetry that predicts molecules of hidden charm in the infinite volume. The energy levels in the box are generated within this model, and several methods for the analysis of these levels (inverse problem) are investigated.
80 - J Nieves , R Gran , F Sanchez 2013
We discuss some nuclear effects, RPA correlations and 2p2h (multinucleon) mechanisms, on charged-current neutrino-nucleus reactions that do not produce a pion in the final state. We study a wide range of neutrino energies, from few hundreds of MeV up to 10 GeV. We also examine the influence of 2p2h mechanisms on the neutrino energy reconstruction.
In this letter, we propose interpolating currents for the X(3872) resonance, and show that, in the Heavy Quark limit of QCD, the X(3872) state should have degenerate partners, independent of its internal structure. Magnitudes of possible I=0 and I=1 components of the X(3872) are also discussed.
We study one pion production in both charged and neutral current neutrino nucleus scattering for neutrino energies below 2 GeV. We use a theoretical model for one pion production at the nucleon level that we correct for medium effects. The results ar e incorporated into a cascade program that apart from production also includes the pion final state interaction inside the nucleus. Besides, in some specific channels coherent pion production is also possible and we evaluate its contribution as well. Our results for total and differential cross sections are compared with recent data from the MiniBooNE Collaboration. The model provides an overall acceptable description of data, better for NC than for CC channels, although theory is systematically below data. Differential cross sections, folded with the full neutrino flux, show that most of the missing pions lie on the forward direction and at high energies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا