ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper, we derive a new generalisation of the strong subadditivity of the entropy to the setting of general conditional expectations onto arbitrary finite-dimensional von Neumann algebras. The latter inequality, which we call approximate tenso rization of the relative entropy, can be expressed as a lower bound for the sum of relative entropies between a given density and its respective projections onto two intersecting von Neumann algebras in terms of the relative entropy between the same density and its projection onto an algebra in the intersection, up to multiplicative and additive constants. In particular, our inequality reduces to the so-called quasi-factorization of the entropy for commuting algebras, which is a key step in modern proofs of the logarithmic Sobolev inequality for classical lattice spin systems. We also provide estimates on the constants in terms of conditions of clustering of correlations in the setting of quantum lattice spin systems. Along the way, we show the equivalence between conditional expectations arising from Petz recovery maps and those of general Davies semigroups.
The mixing time of Markovian dissipative evolutions of open quantum many-body systems can be bounded using optimal constants of certain quantum functional inequalities, such as the modified logarithmic Sobolev constant. For classical spin systems, th e positivity of such constants follows from a mixing condition for the Gibbs measure, via quasi-factorization results for the entropy. Inspired by the classical case, we present a strategy to derive the positivity of the modified logarithmic Sobolev constant associated to the dynamics of certain quantum systems from some clustering conditions on the Gibbs state of a local, commuting Hamiltonian. In particular we show that for the heat-bath dynamics for 1D systems, the modified logarithmic Sobolev constant is positive under the assumptions of a mixing condition on the Gibbs state and a strong quasi-factorization of the relative entropy.
222 - Ivan Bardet 2016
We consider open quantum walks on a graph, and consider the random variables defined as the passage time and number of visits to a given point of the graph. We study in particular the probability that the passage time is finite, the expectation of th at passage time, and the expectation of the number of visits, and discuss the notion of recurrence for open quantum walks. We also study exit times and exit probabilities from a finite domain, and use them to solve Dirichlet problems and to determine harmonic measures. We consider in particular the case of irreducible open quantum walks. The results we obtain extend those for classical Markov chains.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا