ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper we examine the decay of quantum correlations for the radiation field in a two-mode squeezed thermal state in contact with local thermal reservoirs. Two measures of the evolving quantum correlations are compared: the entanglement of form ation and the quantum discord. We derive analytic expressions of the entanglement-death time in two special cases: when the reservoirs for each mode are identical, as well as when a single reservoir acts on the first mode only. In the latter configuration, we show that all the pure Gaussian states lose their entanglement at the same time determined solely by the field-reservoir coupling. Also investigated is the evolution of the Gaussian quantum discord for the same choices of thermal baths. We notice that the discord can increase in time above its initial value in a special situation, namely, when it is defined by local measurements on the attenuated mode and the input state is mixed. This enhancement of discord is stronger for zero-temperature reservoirs and increases with the input degree of mixing.
61 - Iulia Ghiu 2014
In this paper we investigate the efficiency of quantum cloning of $N$ identical mixed qubits. We employ a recently introduced measure of distinguishability of quantum states called quantum Chernoff bound. We evaluate the quantum Chernoff bound betwee n the output clones generated by the cloning machine and the initial mixed qubit state. Our analysis is illustrated by performing numerical calculation of the quantum Chernoff bound for different scenarios that involves the number of initial qubits $N$ and the number of output imperfect copies $M$.
We establish the relation of the spin tomogram to the Wigner function on a discrete phase space of qubits. We use the quantizers and dequantizers of the spin tomographic star-product scheme for qubits to derive the expression for the kernel connectin g Wigner symbols on the discrete phase space with the tomographic symbols.
198 - Iulia Ghiu , Cristian Ghiu 2013
We study the connection between mutually unbiased bases and mutually orthogonal extraordinary supersquares, a wider class of squares which does not contain only the Latin squares. We show that there are four types of complete sets of mutually orthogo nal extraordinary supersquares for the dimension $d=8$. We introduce the concept of physical striation and show that this is equivalent to the extraordinary supersquare. The general algorithm for obtaining the mutually unbiased bases and the physical striations is constructed and it is shown that the complete set of mutually unbiased physical striations is equivalent to the complete set of mutually orthogonal extraordinary supersquares. We apply the algorithm to two examples: one for two-qubit systems ($d=4$) and one for three-qubit systems ($d=8$), by using the Type II complete sets of mutually orthogonal extraordinary supersquares of order 8.
128 - Iulia Ghiu , Paulina Marian , 2013
We investigate non-Gaussianity properties for a set of classical one-mode states obtained by subtracting photons from a thermal state. Three distance-type degrees of non-Gaussianity used for these states are shown to have a monotonic behaviour with r espect to their mean photon number. Decaying of their non-Gaussianity under damping is found to be consistently described by the distance-type measures considered here. We also compare the dissipative evolution of non-Gaussianity when starting from $M$-photon-subtracted and $M$-photon-added thermal states
40 - Paulina Marian , Iulia Ghiu , 2012
We investigate the loss of nonclassicality and non-Gaussianity of a single-mode state of the radiation field in contact with a thermal reservoir. The damped density matrix for a Fock-diagonal input is written using the Weyl expansion of the density o perator. Analysis of the evolution of the quasiprobability densities reveals the existence of two successive characteristic times of the reservoir which are sufficient to assure the positivity of the Wigner function and, respectively, of the $P$ representation. We examine the time evolution of non-Gaussianity using three recently introduced distance-type measures. They are based on the Hilbert-Schmidt metric, the relative entropy, and the Bures metric. Specifically, for an $M$-photon-added thermal state, we obtain a compact analytic formula of the time-dependent density matrix that is used to evaluate and compare the three non-Gaussianity measures. We find a good consistency of these measures on the sets of damped states. The explicit damped quasiprobability densities are shown to support our general findings regarding the loss of negativities of Wigner and $P$ functions during decoherence. Finally, we point out that Gaussification of the attenuated field mode is accompanied by a nonmonotonic evolution of the von Neumann entropy of its state conditioned by the initial value of the mean photon number.
We evaluate a Gaussian distance-type degree of nonclassicality for a single-mode Gaussian state of the quantum radiation field by use of the recently discovered quantum Chernoff bound. The general properties of the quantum Chernoff overlap and its re lation to the Uhlmann fidelity are interestingly illustrated by our approach.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا