ترغب بنشر مسار تعليمي؟ اضغط هنا

106 - Kun W. Kim , Israel Klich , 2013
Chiral edge modes of topological insulators and Hall states exhibit non-trivial behavior of conductance in the presence of impurities or additional channels. We will present a simple formula for the conductance through a chiral edge mode coupled to a disordered bulk. For a given coupling matrix between the chiral mode and bulk modes, and a Green function matrix of bulk modes in real space, the renormalized Green function of the chiral mode is expressed in closed form as a ratio of determinants. We demonstrate the usage of the formula in two systems: i) a 1d wire with random onsite impurity potentials for which we found the disorder averaging is made simpler with the formula, and ii) a quantum Hall fluid with impurities in the bulk for which the phase picked up by the chiral mode due to the scattering with the impurities can be conveniently estimated.
We characterize gapless edge modes in translation invariant topological insulators. We show that the edge mode spectrum is a continuous deformation of the spectrum of a certain gluing function defining the occupied state bundle over the Brillouin zon e (BZ). Topologically non-trivial gluing functions, corresponding to non-trivial bundles, then yield edge modes exhibiting spectral flow. We illustrate our results for the case of chiral edge states in two dimensional Chern insulators, as well as helical edges in quantum spin Hall states.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا