ترغب بنشر مسار تعليمي؟ اضغط هنا

Every time you sit in front of a TV or monitor, your face is actively illuminated by time-varying patterns of light. This paper proposes to use this time-varying illumination for synthetic relighting of your face with any new illumination condition. In doing so, we take inspiration from the light stage work of Debevec et al., who first demonstrated the ability to relight people captured in a controlled lighting environment. Whereas existing light stages require expensive, room-scale spherical capture gantries and exist in only a few labs in the world, we demonstrate how to acquire useful data from a normal TV or desktop monitor. Instead of subjecting the user to uncomfortable rapidly flashing light patterns, we operate on images of the user watching a YouTube video or other standard content. We train a deep network on images plus monitor patterns of a given user and learn to predict images of that user under any target illumination (monitor pattern). Experimental evaluation shows that our method produces realistic relighting results. Video results are available at http://grail.cs.washington.edu/projects/Light_Stage_on_Every_Desk/.
Given an in-the-wild video of a person, we reconstruct an animatable model of the person in the video. The output model can be rendered in any body pose to any camera view, via the learned controls, without explicit 3D mesh reconstruction. At the cor e of our method is a volumetric 3D human representation reconstructed with a deep network trained on input video, enabling novel pose/view synthesis. Our method is an advance over GAN-based image-to-image translation since it allows image synthesis for any pose and camera via the internal 3D representation, while at the same time it does not require a pre-rigged model or ground truth meshes for training, as in mesh-based learning. Experiments validate the design choices and yield results on synthetic data and on real videos of diverse people performing unconstrained activities (e.g. dancing or playing tennis). Finally, we demonstrate motion re-targeting and bullet-time rendering with the learned models.
We present a system that transforms a monocular video of a soccer game into a moving 3D reconstruction, in which the players and field can be rendered interactively with a 3D viewer or through an Augmented Reality device. At the heart of our paper is an approach to estimate the depth map of each player, using a CNN that is trained on 3D player data extracted from soccer video games. We compare with state of the art body pose and depth estimation techniques, and show results on both synthetic ground truth benchmarks, and real YouTube soccer footage.
Recent face recognition experiments on a major benchmark LFW show stunning performance--a number of algorithms achieve near to perfect score, surpassing human recognition rates. In this paper, we advocate evaluations at the million scale (LFW include s only 13K photos of 5K people). To this end, we have assembled the MegaFace dataset and created the first MegaFace challenge. Our dataset includes One Million photos that capture more than 690K different individuals. The challenge evaluates performance of algorithms with increasing numbers of distractors (going from 10 to 1M) in the gallery set. We present both identification and verification performance, evaluate performance with respect to pose and a persons age, and compare as a function of training data size (number of photos and people). We report results of state of the art and baseline algorithms. Our key observations are that testing at the million scale reveals big performance differences (of algorithms that perform similarly well on smaller scale) and that age invariant recognition as well as pose are still challenging for most. The MegaFace dataset, baseline code, and evaluation scripts, are all publicly released for further experimentations at: megaface.cs.washington.edu.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا