ترغب بنشر مسار تعليمي؟ اضغط هنا

The Karp-Rabin fingerprint of a string is a type of hash value that due to its strong properties has been used in many string algorithms. In this paper we show how to construct a data structure for a string $S$ of size $N$ compressed by a context-fre e grammar of size $n$ that answers fingerprint queries. That is, given indices $i$ and $j$, the answer to a query is the fingerprint of the substring $S[i,j]$. We present the first O(n) space data structures that answer fingerprint queries without decompressing any characters. For Straight Line Programs (SLP) we get $O(log N)$ query time, and for Linear SLPs (an SLP derivative that captures LZ78 compression and its variations) we get $O(log log N)$ query time. Hence, our data structures has the same time and space complexity as for random access in SLPs. We utilize the fingerprint data structures to solve the longest common extension problem in query time $O(log N log lce)$ and $O(log lce loglog lce + loglog N)$ for SLPs and Linear SLPs, respectively. Here, $lce$ denotes the length of the LCE.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا