ﻻ يوجد ملخص باللغة العربية
The Karp-Rabin fingerprint of a string is a type of hash value that due to its strong properties has been used in many string algorithms. In this paper we show how to construct a data structure for a string $S$ of size $N$ compressed by a context-free grammar of size $n$ that answers fingerprint queries. That is, given indices $i$ and $j$, the answer to a query is the fingerprint of the substring $S[i,j]$. We present the first O(n) space data structures that answer fingerprint queries without decompressing any characters. For Straight Line Programs (SLP) we get $O(log N)$ query time, and for Linear SLPs (an SLP derivative that captures LZ78 compression and its variations) we get $O(log log N)$ query time. Hence, our data structures has the same time and space complexity as for random access in SLPs. We utilize the fingerprint data structures to solve the longest common extension problem in query time $O(log N log lce)$ and $O(log lce loglog lce + loglog N)$ for SLPs and Linear SLPs, respectively. Here, $lce$ denotes the length of the LCE.
In this paper, we consider the problem of identifying patterns of interest in colored strings. A colored string is a string where each position is assigned one of a finite set of colors. Our task is to find substrings of the colored string that alway
Like [1], we present an algorithm to compute the simulation of a query pattern in a graph of labeled nodes and unlabeled edges. However, our algorithm works on a compressed graph grammar, instead of on the original graph. The speed-up of our algorith
A string $S[1,n]$ is a power (or tandem repeat) of order $k$ and period $n/k$ if it can decomposed into $k$ consecutive equal-length blocks of letters. Powers and periods are fundamental to string processing, and algorithms for their efficient comput
In this paper we study the fundamental problem of maintaining a dynamic collection of strings under the following operations: concat - concatenates two strings, split - splits a string into two at a given position, compare - finds the lexicographical
Given a string $S$ of length $n$, the classic string indexing problem is to preprocess $S$ into a compact data structure that supports efficient subsequent pattern queries. In this paper we consider the basic variant where the pattern is given in com