ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a formulation of the so-called Fermi sea contribution to the conductivity tensor of spin-polarized random alloys within the fully relativistic tight-binding linear muffin-tin-orbital (TB-LMTO) method and the coherent potential approximatio n (CPA). We show that the configuration averaging of this contribution leads to the CPA-vertex corrections that are solely due to the energy dependence of the average single-particle propagators. Moreover, we prove that this contribution is indispensable for the invariance of the anomalous Hall conductivities with respect to the particular LMTO representation used in numerical implementation. Ab initio calculations for cubic ferromagnetic 3d transition metals (Fe, Co, Ni) and their random binary alloys (Ni-Fe, Fe-Si) indicate that the Fermi sea term is small against the dominating Fermi surface term. However, for more complicated structures and systems, such as hexagonal cobalt and selected ordered and disordered Co-based Heusler alloys, the Fermi sea term plays a significant role in the quantitative theory of the anomalous Hall effect.
We present results of systematic fully relativistic first-principles calculations of the uniaxial magnetic anisotropy energy (MAE) of a disordered and partially ordered tetragonal Fe-Co alloy using the coherent potential approximation (CPA). This all oy has recently become a promising system for thin ferromagnetic films with a perpendicular magnetic anisotropy. We find that existing theoretical approaches to homogeneous random bulk Fe-Co alloys, based on a simple virtual crystal approximation (VCA), overestimate the maximum MAE values obtained in the CPA by a factor of four. This pronounced difference is ascribed to the strong disorder in the minority spin channel of real alloys, which is neglected in the VCA and which leads to a broadening of the d-like eigenstates at the Fermi energy and to the reduction of the MAE. The ordered Fe-Co alloys with a maximum L1_0-like atomic long-range order can exhibit high values of the MAE, which, however, get dramatically reduced by small perturbations of the perfect order.
109 - Rudolf Sykora , Ilja Turek 2012
Results of first-principles calculations of the Fe/GaAs/Ag(001) epitaxial tunnel junctions reveal that hybridization of interface resonances formed at both interfaces can enhance the tunnelling anisotropic magnetoresistance (TAMR) of the systems. Thi s mechanism is manifested by a non-monotonic dependence of the TAMR effect on the thickness of the tunnel barrier, with a maximum for intermediate thicknesses. A detailed scan of k-resolved transmissions over the two-dimensional Brillouin zone proves an interplay between a few hybridization-induced hot spots and a contribution to the tunnelling from the vicinity of the Gamma-bar point. This interpretation is supported by calculated properties of a simple tight-binding model of the junction which reproduce qualitatively most of the features of the first-principles theory.
We present an ab initio theory of transport quantities of metallic ferromagnets developed in the framework of the fully relativistic tight-binding linear muffin-tin orbital method. The approach is based on the Kubo-Streda formula for the conductivity tensor, on the coherent potential approximation for random alloys, and on the concept of interatomic electron transport. The developed formalism is applied to pure 3d transition metals (Fe, Co, Ni) and to random Ni-based ferromagnetic alloys (Ni-Fe, Ni-Co, Ni-Mn). High values of the anisotropic magnetoresistance (AMR), found for Ni-rich alloys, are explained by a negligible disorder in the majority spin channel while a change of the sign of the anomalous Hall effect (AHE) on alloying is interpreted as a band-filling effect without a direct relation to the high AMR. The influence of disorder on the AHE in concentrated alloys is investigated as well.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا