ترغب بنشر مسار تعليمي؟ اضغط هنا

The announcement by the IceCube Collaboration of the observation of 28 cosmic neutrino candidates has been greeted with a great deal of justified excitement. The data reported so far depart by 4.3sigma from the expected atmospheric neutrino backgroun d, which raises the obvious question: Where in the Cosmos are these neutrinos coming from? We review the many possibilities which have been explored in the literature to address this question, including origins at either Galactic or extragalactic celestial objects. For completeness, we also briefly discuss new physics processes which may either explain or be constrained by IceCube data.
Recent data from cosmic ray experiments such as PAMELA, Fermi, ATIC and PPB-BETS all suggest the need for a new primary source of electrons and positrons at high (>~100 GeV) energies. Many proposals have been put forth to explain these data, usually relying on a single particle to annihilate or decay to produce e+e-. In this paper, we consider models with multiple species of WIMPs with significantly different masses. We show if such dark matter candidates chi_i annihilate into light bosons, they naturally produce equal annihilation rates, even as the available numbers of pairs for annihilation n_chi_i^2 differ by orders of magnitude. We argue that a consequence of these models can be to add additional signal naturally at lower (~100 GeV) versus higher (~ TeV) energies, changing the expected spectrum and even adding bumps at lower energies, which may alleviate some of the tension in the required annihilation rates between PAMELA and Fermi. These spectral changes may yield observable consequences in the microwave Haze signal observed at the upcoming Planck satellite. Such a model can connect to other observable signals such as DAMA and INTEGRAL by having the lighter (heavier) state be a pseudo-Dirac fermion with splitting 100 keV (1 MeV). We show that variations in the halo velocity dispersion can alleviate constraints from final state radiation in the galactic center and galactic ridge. If the lighter WIMP has a large self-interaction cross section, the light-WIMP halo might collapse, dramatically altering expectations for direct and indirect detection signatures.
Multiple lines of evidence indicate an anomalous injection of high-energy e+- in the Galactic halo. The recent $e^+$ fraction spectrum from the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) shows a sharp rise up to 100 GeV. The Fermi Gamma-ray Space Telescope has found a significant hardening of the e+e- cosmic ray spectrum above 100 GeV, with a break, confirmed by HESS at around 1 TeV. The Advanced Thin Ionization Calorimeter (ATIC) has also detected detected a similar excess, falling back to the expected spectrum at 1 TeV and above. Excess microwaves towards the galactic center in the WMAP data are consistent with hard synchrotron radiation from a population of 10-100 GeV e+- (the WMAP ``Haze). We argue that dark matter annihilations can provide a consistent explanation of all of these data, focusing on dominantly leptonic modes, either directly or through a new light boson. Normalizing the signal to the highest energy evidence (Fermi and HESS), we find that similar cross sections provide good fits to PAMELA and the Haze, and that both the required cross section and annihilation modes are achievable in models with Sommerfeld-enhanced annihilation. These models naturally predict significant production of gamma rays in the galactic center via a variety of mechanisms. Most notably, there is a robust inverse-Compton scattered (ICS) gamma-ray signal arising from the energetic electrons and positrons, detectable at Fermi/GLAST energies, which should provide smoking gun evidence for this production.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا