ﻻ يوجد ملخص باللغة العربية
Recent data from cosmic ray experiments such as PAMELA, Fermi, ATIC and PPB-BETS all suggest the need for a new primary source of electrons and positrons at high (>~100 GeV) energies. Many proposals have been put forth to explain these data, usually relying on a single particle to annihilate or decay to produce e+e-. In this paper, we consider models with multiple species of WIMPs with significantly different masses. We show if such dark matter candidates chi_i annihilate into light bosons, they naturally produce equal annihilation rates, even as the available numbers of pairs for annihilation n_chi_i^2 differ by orders of magnitude. We argue that a consequence of these models can be to add additional signal naturally at lower (~100 GeV) versus higher (~ TeV) energies, changing the expected spectrum and even adding bumps at lower energies, which may alleviate some of the tension in the required annihilation rates between PAMELA and Fermi. These spectral changes may yield observable consequences in the microwave Haze signal observed at the upcoming Planck satellite. Such a model can connect to other observable signals such as DAMA and INTEGRAL by having the lighter (heavier) state be a pseudo-Dirac fermion with splitting 100 keV (1 MeV). We show that variations in the halo velocity dispersion can alleviate constraints from final state radiation in the galactic center and galactic ridge. If the lighter WIMP has a large self-interaction cross section, the light-WIMP halo might collapse, dramatically altering expectations for direct and indirect detection signatures.
Multiwavelength observations suggest that clusters are reservoirs of vast amounts relativistic electrons and positrons that are either injected into and accelerated directly in the intra-cluster medium, or produced as secondary pairs by cosmic ray io
(abridged) The Galactic Center is one of the most promising targets for indirect detection of dark matter with gamma rays. We investigate the sensitivity of the upcoming Cherenkov Telescope Array (CTA) to dark matter annihilation and decay in the Gal
As part of the Snowmass process, the Cosmic Frontier Indirect-Detection subgroup (CF2) has drawn on input from the Cosmic Frontier and the broader Particle Physics community to produce this document. The purposes of this report are to identify opport
We construct empirical models of the diffuse gamma-ray background toward the Galactic Center. Including all known point sources and a template of emission associated with interactions of cosmic rays with molecular gas, we show that the extended emiss
We analyze the possibility that the HESS gamma-ray source at the Galactic Center could be explained as the secondary flux produced by annihilation of TeV Dark Matter (TeVDM) particles with locally enhanced density, in a region spatially compatible wi