ترغب بنشر مسار تعليمي؟ اضغط هنا

We explore the implications of t-b-tau (and b-tau) Yukawa coupling unification condition on the fundamental parameter space and sparticle spectroscopy in the minimal gauge mediated supersymmetry breaking (mGMSB) model. We find that this scenario pref ers values of the CP-odd Higgs mass m_A > 1 TeV, with all colored sparticle masses above 3 TeV. These predictions will be hard to test at LHC13 but they may be testable at HE-LHC 33 TeV or a 100 TeV collider. Both t-b-tau and b-tau Yukawa coupling unifications prefer a relatively light gravitino with mass < 30 eV, which makes it a candidate hot dark matter particle. However, it cannot account for more than 15 % of the observed dark matter density.
We consider two classes of supersymmetric models with nonuniversal gaugino masses at M_GUT in an attempt to resolve the apparent muon g-2 anomaly encountered in the Standard Model. We explore two distinct scenarios, one in which all gaugino masses ha ve the same sign at M_GUT, and a second case with opposite sign gaugino masses. The sfermion masses in both cases are assumed to be universal at M_GUT. We exploit the non universality among gaugino masses to realize large mass splitting between the colored and non-colored sfermions. Thus, the sleptons can have masses in the few hundred GeV range, whereas the colored sparticles turn out to be an order of magnitude or so heavier. In both models the resolution of the muon g-2 anomaly is compatible, among other things, with a 125-126 GeV Higgs boson mass and the WMAP dark matter bounds.
We demonstrate that natural supersymmetry is readily realized in the framework of SU(4)_c times SU(2)_L times SU(2)_R with non-universal gaugino masses. Focusing on ameliorating the little hierarchy problem, we explore the parameter space of this mod el which yields small fine-tuning measuring parameters (natural supersymmetry) at the electroweak scale (Delta_{EW}) as well as at high scale (Delta_{HS}). It is possible to have both Delta_{EW} and Delta_{HS} less than 100 in these models, (2 % or better fine-tuning), while keeping the light CP-even (Standard Model-like) Higgs mass in the 123 GeV-127 GeV range. The light stop quark mass lies in the range 700 GeV <m_{tilde{t}_{1}}< 1500 GeV, and the range for the light stau lepton mass is 900 GeV <m_{tilde{tau}_{1}}< 1300 GeV. The first two family squarks are in the mass range 3000 GeV <m_{tilde{t}_{1}}< 4500 GeV, and for the gluino we find 2500 GeV <m_{tilde{g}_{1}}< 3500 GeV. We do not find any solution with natural supersymmetry which yields significant enhancement for Higgs production and decay in the diphoton channel.
We consider two classes of t-b-tau quasi-Yukawa unification scenarios which can arise from realistic supersymmetric SO(10) and SU(4)_C X SU(2)_L X SU(2)_R models. We show that these scenarios can be successfully implemented in the CMSSM and NUHM1 fra meworks, and yields a variety of sparticle spectra with WMAP compatible neutralino dark matter. In NUHM1 we find bino-higgsino dark matter as well as the stau coannihilation and A-funnel solutions. The CMSSM case yields the stau coannihilation and A-funnel solutions. The gluino and squark masses are found to lie in the TeV range.
We show compatibility with all known experimental constraints of t-b-tau Yukawa coupling unification in supersymmetric SU(4)_c x SU(2)_L x SU(2)_R which has non-universal gaugino masses and the MSSM parameter mu < 0. In particular, the relic neutrali no abundance satisfies the WMAP bounds and Delta (g-2)_mu is in good agreement with the observations. We identify benchmark points for the sparticle spectra which can be tested at the LHC, including those associated with gluino and stau coannihilation channels, mixed bino-Higgsino state and the A-funnel region. We also briefly discuss prospects for testing Yukawa unification with the ongoing and planned direct detection experiments.
Unification at M_{GUT}sim 3times 10^{16} GeV of the three Standard Model (SM) gauge couplings can be achieved by postulating the existence of a pair of vectorlike fermions carrying SM charges and masses of order 300 GeV -- 1 TeV. The presence of thes e fermions significantly modifies the vacuum stability and perturbativity bounds on the mass of the SM Higgs boson. The new vacuum stability bound in this extended SM is estimated to be 117 GeV, to be compared with the SM prediction of about 128 GeV. An upper bound of 190 GeV is obtained based on perturbativity arguments. The impact on these predictions of type I seesaw physics is also discussed. The discovery of a relatively `light Higgs boson with mass sim 117 GeV could signal the presence of new vectorlike fermions within reach of the LHC.
We consider a class of supersymmetric models containing baryon number violating processes such as observable neutron - antineutron oscillations that are mediated by color triplet diquark fields. For plausible values of the diquark-quark couplings, th e scalar diquark with mass between a few hundred GeV and one TeV or so can be produced in the s-channel at the LHC and detected through its decay into a top quark and a hadronic jet.
We discuss how the cosmic ray signals reported by the PAMELA and ATIC/PPB-BETS experiments may be understood in a Standard Model (SM) framework supplemented by type II seesaw and a stable SM singlet scalar boson as dark matter. A particle physics exp lanation of the boost factor can be provided by including an additional SM singlet scalar field.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا