ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider a variant of Gamows liquid drop model with an anisotropic surface energy. Under suitable regularity and ellipticity assumptions on the surface tension, Wulff shapes are minimizers in this problem if and only if the surface energy is isotr opic. We show that for smooth anisotropies, in the small nonlocality regime, minimizers converge to the Wulff shape in $C^1$-norm and quantify the rate of convergence. We also obtain a quantitative extension of the energy of any minimizer around the energy of a Wulff shape yielding a geometric stability result. For certain crystalline surface tensions we can determine the global minimizer and obtain its exact energy expansion in terms of the nonlocality parameter.
We study the singular perturbation of an elastic energy with a singular weight. The minimization of this energy results in a multi-scale pattern formation. We derive an energy scaling law in terms of the perturbation parameter and prove that, althoug h one cannot expect periodicity of minimizers, the energy of a minimizer is uniformly distributed across the sample. Finally, following the approach developed by Alberti and M{u}ller in 2001 we prove that a sequence of minimizers of the perturbed energies converges to a Young measure supported on functions of slope $pm 1$ and of period depending on the location in the domain and the weights in the energy.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا