ترغب بنشر مسار تعليمي؟ اضغط هنا

Cloud Computing has become another buzzword after Web 2.0. However, there are dozens of different definitions for Cloud Computing and there seems to be no consensus on what a Cloud is. On the other hand, Cloud Computing is not a completely new concep t; it has intricate connection to the relatively new but thirteen-year established Grid Computing paradigm, and other relevant technologies such as utility computing, cluster computing, and distributed systems in general. This paper strives to compare and contrast Cloud Computing with Grid Computing from various angles and give insights into the essential characteristics of both.
With the advances in e-Sciences and the growing complexity of scientific analyses, more and more scientists and researchers are relying on workflow systems for process coordination, derivation automation, provenance tracking, and bookkeeping. While w orkflow systems have been in use for decades, it is unclear whether scientific workflows can or even should build on existing workflow technologies, or they require fundamentally new approaches. In this paper, we analyze the status and challenges of scientific workflows, investigate both existing technologies and emerging languages, platforms and systems, and identify the key challenges that must be addressed by workflow systems for e-science in the 21st century.
The practical realization of managing and executing large scale scientific computations efficiently and reliably is quite challenging. Scientific computations often involve thousands or even millions of tasks operating on large quantities of data, su ch data are often diversely structured and stored in heterogeneous physical formats, and scientists must specify and run such computations over extended periods on collections of compute, storage and network resources that are heterogeneous, distributed and may change constantly. We present the integration of several advanced systems: Swift, Karajan, and Falkon, to address the challenges in running various large scale scientific applications in Grid environments. Swift is a parallel programming tool for rapid and reliable specification, execution, and management of large-scale science and engineering workflows. Swift consists of a simple scripting language called SwiftScript and a powerful runtime system that is based on the CoG Karajan workflow engine and integrates the Falkon light-weight task execution service that uses multi-level scheduling and a streamlined dispatcher. We showcase the scalability, performance and reliability of the integrated system using application examples drawn from astronomy, cognitive neuroscience and molecular dynamics, which all comprise large number of fine-grained jobs. We show that Swift is able to represent dynamic workflows whose structures can only be determined during runtime and reduce largely the code size of various workflow representations using SwiftScript; schedule the execution of hundreds of thousands of parallel computations via the Karajan engine; and achieve up to 90% reduction in execution time when compared to traditional batch schedulers.
Data-intensive applications often require exploratory analysis of large datasets. If analysis is performed on distributed resources, data locality can be crucial to high throughput and performance. We propose a data diffusion approach that acquires c ompute and storage resources dynamically, replicates data in response to demand, and schedules computations close to data. As demand increases, more resources are acquired, thus allowing faster response to subsequent requests that refer to the same data; when demand drops, resources are released. This approach can provide the benefits of dedicated hardware without the associated high costs, depending on workload and resource characteristics. The approach is reminiscent of cooperative caching, web-caching, and peer-to-peer storage systems, but addresses different application demands. Other data-aware scheduling approaches assume dedicated resources, which can be expensive and/or inefficient if load varies significantly. To explore the feasibility of the data diffusion approach, we have extended the Falkon resource provisioning and task scheduling system to support data caching and data-aware scheduling. Performance results from both micro-benchmarks and a large scale astronomy application demonstrate that our approach improves performance relative to alternative approaches, as well as provides improved scalability as aggregated I/O bandwidth scales linearly with the number of data cache nodes.
Data intensive applications often involve the analysis of large datasets that require large amounts of compute and storage resources. While dedicated compute and/or storage farms offer good task/data throughput, they suffer low resource utilization p roblem under varying workloads conditions. If we instead move such data to distributed computing resources, then we incur expensive data transfer cost. In this paper, we propose a data diffusion approach that combines dynamic resource provisioning, on-demand data replication and caching, and data locality-aware scheduling to achieve improved resource efficiency under varying workloads. We define an abstract data diffusion model that takes into consideration the workload characteristics, data accessing cost, application throughput and resource utilization; we validate the model using a real-world large-scale astronomy application. Our results show that data diffusion can increase the performance index by as much as 34X, and improve application response time by over 506X, while achieving near-optimal throughputs and execution times.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا