ترغب بنشر مسار تعليمي؟ اضغط هنا

Data Diffusion: Dynamic Resource Provision and Data-Aware Scheduling for Data Intensive Applications

148   0   0.0 ( 0 )
 نشر من قبل Ioan Raicu
 تاريخ النشر 2008
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Data intensive applications often involve the analysis of large datasets that require large amounts of compute and storage resources. While dedicated compute and/or storage farms offer good task/data throughput, they suffer low resource utilization problem under varying workloads conditions. If we instead move such data to distributed computing resources, then we incur expensive data transfer cost. In this paper, we propose a data diffusion approach that combines dynamic resource provisioning, on-demand data replication and caching, and data locality-aware scheduling to achieve improved resource efficiency under varying workloads. We define an abstract data diffusion model that takes into consideration the workload characteristics, data accessing cost, application throughput and resource utilization; we validate the model using a real-world large-scale astronomy application. Our results show that data diffusion can increase the performance index by as much as 34X, and improve application response time by over 506X, while achieving near-optimal throughputs and execution times.



قيم البحث

اقرأ أيضاً

In the era of data explosion, a growing number of data-intensive computing frameworks, such as Apache Hadoop and Spark, have been proposed to handle the massive volume of unstructured data in parallel. Since programming models provided by these frame works allow users to specify complex and diversified user-defined functions (UDFs) with predefined operations, the grand challenge of tuning up entire system performance arises if programmers do not fully understand the semantics of code, data, and runtime systems. In this paper, we design a holistic semantics-aware optimization for data-intensive applications using hybrid program analysis} (SODA) to assist programmers to tune performance issues. SODA is a two-phase framework: the offline phase is a static analysis that analyzes code and performance profiling data from the online phase of prior executions to generate a parameterized and instrumented application; the online phase is a dynamic analysis that keeps track of the applications execution and collects runtime information of data and system. Extensive experimental results on four real-world Spark applications show that SODA can gain up to 60%, 10%, 8%, faster than its original implementation, with the three proposed optimization strategies, i.e., cache management, operation reordering, and element pruning, respectively.
In the past few years, we have envisioned an increasing number of businesses start driving by big data analytics, such as Amazon recommendations and Google Advertisements. At the back-end side, the businesses are powered by big data processing platfo rms to quickly extract information and make decisions. Running on top of a computing cluster, those platforms utilize scheduling algorithms to allocate resources. An efficient scheduler is crucial to the system performance due to limited resources, e.g. CPU and Memory, and a large number of user demands. However, besides requests from clients and current status of the system, it has limited knowledge about execution length of the running jobs, and incoming jobs resource demands, which make assigning resources a challenging task. If most of the resources are occupied by a long-running job, other jobs will have to keep waiting until it releases them. This paper presents a new scheduling strategy, named DRESS that particularly aims to optimize the allocation among jobs with various demands. Specifically, it classifies the jobs into two categories based on their requests, reserves a portion of resources for each of category, and dynamically adjusts the reserved ratio by monitoring the pending requests and estimating release patterns of running jobs. The results demonstrate DRESS significantly reduces the completion time for one category, up to 76.1% in our experiments, and in the meanwhile, maintains a stable overall system performance.
We consider energy minimization for data-intensive applications run on large number of servers, for given performance guarantees. We consider a system, where each incoming application is sent to a set of servers, and is considered to be completed if a subset of them finish serving it. We consider a simple case when each server core has two speed levels, where the higher speed can be achieved by higher power for each core independently. The core selects one of the two speeds probabilistically for each incoming application request. We model arrival of application requests by a Poisson process, and random service time at the server with independent exponential random variables. Our model and analysis generalizes to todays state-of-the-art in CPU energy management where each core can independently select a speed level from a set of supported speeds and corresponding voltages. The performance metrics under consideration are the mean number of applications in the system and the average energy expenditure. We first provide a tight approximation to study this previously intractable problem and derive closed form approximate expressions for the performance metrics when service times are exponentially distributed. Next, we study the trade-off between the approximate mean number of applications and energy expenditure in terms of the switching probability.
An emerging class of data-intensive applications involve the geographically dispersed extraction of complex scientific information from very large collections of measured or computed data. Such applications arise, for example, in experimental physics , where the data in question is generated by accelerators, and in simulation science, where the data is generated by supercomputers. So-called Data Grids provide essential infrastructure for such applications, much as the Internet provides essential services for applications such as e-mail and the Web. We describe here two services that we believe are fundamental to any Data Grid: reliable, high-speed transporet and replica management. Our high-speed transport service, GridFTP, extends the popular FTP protocol with new features required for Data Grid applciations, such as striping and partial file access. Our replica management service integrates a replica catalog with GridFTP transfers to provide for the creation, registration, location, and management of dataset replicas. We present the design of both services and also preliminary performance results. Our implementations exploit security and other services provided by the Globus Toolkit.
In Wolke et al. [1] we compare the efficiency of different resource allocation strategies experimentally. We focused on dynamic environments where virtual machines need to be allocated and deallocated to servers over time. In this companion paper, we describe the simulation framework and how to run simulations to replicate experiments or run new experiments within the framework.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا