ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate theoretically the transport properties of the side-coupled double quantum dots in connection with the experimental study of Sasaki {it et al.} Phys.Rev.Lett.{bf 103}, 266806 (2009). The novelty of the set-up consists in connecting the Kondo dot directly to the leads, while the side dot provides an interference path which affects the Kondo correlations. We analyze the oscillations of the source-drain current due to the periodical Coulomb blockade of the many-level side-dot at the variation of the gate potential applied on it. The Fano profile of these oscillations may be controlled by the temperature, gate potential and interdot coupling. The non-equilibrium conductance of the double dot system exhibits zero bias anomaly which, besides the usual enhancement, may show also a suppression (a dip-like aspect) which occurs around the Fano {it zero}. In the same region, the weak temperature dependence of the conductance indicates the suppression of the Kondo effect. Scaling properties of the non-equilibrium conductance in the Fano-Kondo regime are discussed. Since the SIAM Kondo temperature is no longer the proper scaling parameter, we look for an alternative specific to the double-dot. The extended Anderson model, Keldysh formalism and equation of motion technique are used.
170 - I.V. Dinu , M. Tolea , A. Aldea 2007
We apply the Keldysh formalism in order to derive a current formula easy to use for a system with many sites, one of which is interacting. The main technical challenge is to deal with the lesser Green function. It turns out that, in the case of the l eft-right symmetry, the knowledge of the lesser Green function is not necessary and an exact current formula can be expressed in terms of retarded Green functions only. The application is done for a triangular interferometer which gives a good account of the Fano-Kondo effect. It is found that the interference effects, in the context of Kondo correlations, give rise to a point in the parameters space where the conductance is temperature-independent. We include a comparison with the results from the Ngs ansatz, which are less accurate, but can be used also in the absence of the above mentioned symmetry.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا