ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a first-principle study of spin-orbit coupling effects on the Fermi surface of Sr2RuO4 and Sr2RhO4. For nearly degenerate bands, spin-orbit coupling leads to a dramatic change of the Fermi surface with respect to non-relativistic calculati ons; as evidenced by the comparison with experiments on Sr2RhO4, it cannot be disregarded. For Sr2RuO4, the Fermi surface modifications are more subtle but equally dramatic in the detail: spin-orbit coupling induces a strong momentum dependence, normal to the RuO2 planes, for both orbital and spin character of the low-energy electronic states. These findings have profound implications for the understanding of unconventional superconductivity in Sr2RuO4.
We describe a possible pathway to new magnetic materials with no conventional magnetic elements present. The substitution of Nitrogen for Oxygen in simple non magnetic oxides leads to holes in N 2$p$ states which form local magnetic moments. Because of the very large Hunds rule coupling of Nitrogen and O 2$p$ electrons and the rather extended spatial extend of the wave functions these materials are predicted to be ferromagnetic metals or small band gap insulators. Experimental studies support the theoretical calculations with regard to the basic electronic structure and the formation of local magnetic moments. It remains to be seen if these materials are magnetically ordered and if so below what temperature.
The electronic structure of the high-T_c superconductor Tl2Ba2CuO6+d is studied by ARPES. For a very overdoped Tc=30K sample, the Fermi surface consists of a single large hole pocket centered at (pi,pi) and is approaching a topological transition. Al though a superconducting gap with d_x^2-y^2 symmetry is tentatively identified, the quasiparticle evolution with momentum and binding energy exhibits a marked departure from the behavior observed in under and optimally doped cuprates. The relevance of these findings to scattering, many-body, and quantum-critical phenomena is discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا