ترغب بنشر مسار تعليمي؟ اضغط هنا

Within the Ginzburg-Landau model we study the critical field and temperature enhancement for crossing superconducting channels formed either along the sample edges or domain walls in thin-film magnetically coupled superconducting - ferromagnetic bila yers. The corresponding Cooper pair wave function can be viewed as a hybridization of two order parameter (OP) modes propagating along the boundaries and/or domain walls. Different momenta of hybridized OP modes result in the formation of vortex chains outgoing from the crossing point of these channels. Near this crossing point the wave functions of the modes merge giving rise to the increase in the critical temperature for a localized superconducting state. The origin of this critical temperature enhancement caused by the wave function squeezing is illustrated for a limiting case of approaching parallel boundaries and/or domain walls. Using both the variational method and numerical simulations we have studied the critical temperature dependence and OP structure vs the applied magnetic field and the angle between the crossing channels.
The effect of noise on the process of high-speed remagnetization of vortex state of a pentagonal array of five circular magnetic nanoparticles is studied by means of computer simulation of Landau-Lifshits model. The mean switching time and its standa rd deviation of the reversal between the counterclockwise and clockwise vorticities have been computed. It has been demonstrated that with the reversal by the pulse with sinusoidal shape, the optimal pulse duration exists, which minimizes both the mean switching time (MST) and the standard deviation (SD). Besides, both MST and SD significantly depend on the angle between the reversal magnetic field and pentagon edge, and the optimal angle roughly equals 10 degrees. Also, it is demonstrated that the optimization of the angle, duration and the amplitude of the driving field leads to significant decrease of both MST and SD. In particular, for the considered parameters, the MST can be decreased from 60 ns to 2-3 ns. Such a chain of magnetic nanoparticles can effectively be used as an element of magnetoresistive memory, and at the temperature 300K the stable operation of the element is observed up to rather small size of nanoparticles with the raduis of 20 nm.
The effect of noise on the reversal of a magnetic dipole is investigated on the basis of computer simulation of the Landau-Lifshits equation. It is demonstrated that at the reversal by the pulse with sinusoidal shape, there exists the optimal duratio n, which minimizes the mean reversal time (MRT) and the standard deviation (jitter). Both the MRT and the jitter significantly depend on the angle between the reversal magnetic field and the anisotropy axis. At the optimal angle the MRT can be decreased by 7 times for damping $alpha$=1 and up to 2 orders of magnitude for $alpha$=0.01, and the jitter can be decreased from 1 to 3 orders of magnitude in comparison with the uniaxial symmetry case.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا