ﻻ يوجد ملخص باللغة العربية
The effect of noise on the reversal of a magnetic dipole is investigated on the basis of computer simulation of the Landau-Lifshits equation. It is demonstrated that at the reversal by the pulse with sinusoidal shape, there exists the optimal duration, which minimizes the mean reversal time (MRT) and the standard deviation (jitter). Both the MRT and the jitter significantly depend on the angle between the reversal magnetic field and the anisotropy axis. At the optimal angle the MRT can be decreased by 7 times for damping $alpha$=1 and up to 2 orders of magnitude for $alpha$=0.01, and the jitter can be decreased from 1 to 3 orders of magnitude in comparison with the uniaxial symmetry case.
Spin-torque ferromagnetic resonance (ST-FMR) arises in heavy metal/ferromagnet heterostructures when an alternating charge current is passed through the bilayer stack. The methodology to detect the resonance is based on the anisotropic magnetoresista
The ability to manipulate individual atoms and molecules using a scanning tunnelling microscope (STM) has been crucial for the development of a vast array of atomic scale devices and structures ranging from nanoscale motors and switches to quantum co
The effect of noise on the process of high-speed remagnetization of vortex state of a pentagonal array of five circular magnetic nanoparticles is studied by means of computer simulation of Landau-Lifshits model. The mean switching time and its standa
General quantum restrictions on the noise performance of linear transistor amplifiers are used to identify the region in parameter space where the quantum-limited performance is achievable and to construct a practical procedure for approaching it exp
Uncooled Terahertz (THz) photodetectors (PDs) showing fast (ps) response and high sensitivity (noise equivalent power (NEP) < $nWHz^{-1/2}$) over a broad (0.5THz-10THz) frequency range are needed for applications in high-resolution spectroscopy (rela