ترغب بنشر مسار تعليمي؟ اضغط هنا

The formation of an equilibrium quantum state from an uncorrelated thermal one through the dynamical crossing of a phase transition is a central question of non-equilibrium many-body physics. During such crossing, the system breaks its symmetry by es tablishing numerous uncorrelated regions separated by spontaneously-generated defects, whose emergence obeys a universal scaling law with the quench duration. Much less is known about the ensuing re-equilibrating or coarse-graining stage, which is governed by the evolution and interactions of such defects under system-specific and external constraints. In this work we perform a detailed numerical characterization of the entire non-equilibrium process, addressing subtle issues in condensate growth dynamics and demonstrating the quench-induced decoupling of number and coherence growth during the re-equilibration process. Our unique visualizations not only reproduce experimental measurements in the relevant regimes, but also provide valuable information in currently experimentally-inaccessible regimes.
102 - S.-W. Su , S.-C. Gou , I.-K. Liu 2014
We theoretically explore atomic Bose-Einstein condensates (BECs) subject to position-dependent spin-orbit coupling (SOC). This SOC can be produced by cyclically laser coupling four internal atomic ground (or metastable) states in an environment where the detuning from resonance depends on position. The resulting spin-orbit coupled BEC phase-separates into domains, each of which contain density modulations - stripes - aligned either along the x or y direction. In each domain, the stripe orientation is determined by the sign of the local detuning. When these stripes have mismatched spatial periods along domain boundaries, non-trivial topological spin textures form at the interface, including skyrmions-like spin vortices and anti-vortices. In contrast to vortices present in conventional rotating BECs, these spin-vortices are stable topological defects that are not present in the corresponding homogenous stripe-phase spin-orbit coupled BECs.
We study the sensitivity of coupled condensate formation dynamics on the history of initial stochastic domain formation in the context of instantaneously quenched elongated harmonically-trapped immiscible two-component atomic Bose gases. The spontane ous generation of defects in the fastest condensing component, and subsequent coarse-graining dynamics, can lead to a deep oscillating microtrap into which the other component condenses, thereby establishing a long-lived composite defect in the form of a dark-bright solitary wave. We numerically map out diverse key aspects of these competing growth dynamics, focussing on the role of shot-to-shot fluctuations and global parameter changes (initial state choices, quench parameters and condensate growth rates). We conclude that phase-separated structures observable on experimental timescales are likely to be metastable states whose form is influenced by the stability and dynamics of the spontaneously-emerging dark-bright solitary wave.
198 - S.-W. Su , I.-K. Liu , Y.-C. Tsai 2011
The non-equilibrium dynamics of a rapidly quenched spin-1 Bose gas with spin-orbit coupling is studied. By solving the stochastic projected Gross-Pitaevskii equation, we show that crystallization of merons can occur in a spinor condensate of ^{87}Rb. Analytic form and stability of the crystal structure are given. Likewise, inverted merons can be created in a spin-polarized spinor condensate of ^{23}Na. Our studies provide a chance to explore the fundamental properties of meron-like matter.
106 - S.-W. Su , C.-H. Hsueh , I.-K. Liu 2011
We investigate the spontaneous generation of crystallized topological defects via the combining effects of fast rotation and rapid thermal quench on the spin-1 Bose-Einstein condensates. By solving the stochastic projected Gross-Pitaevskii equation, we show that, when the system reaches equilibrium, a hexagonal lattice of skyrmions, and a square lattice of half-quantized vortices can be formed in a ferromagnetic and antiferromagnetic spinor BEC, respetively, which can be imaged by using the polarization-dependent phase-contrast method.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا