ترغب بنشر مسار تعليمي؟ اضغط هنا

We report the discovery of a Jupiter-mass planet orbiting an M-dwarf star that gave rise to the microlensing event OGLE-2011-BLG-0265. Such a system is very rare among known planetary systems and thus the discovery is important for theoretical studie s of planetary formation and evolution. High-cadence temporal coverage of the planetary signal combined with extended observations throughout the event allows us to accurately model the observed light curve. The final microlensing solution remains, however, degenerate yielding two possible configurations of the planet and the host star. In the case of the preferred solution, the mass of the planet is $M_{rm p} = 0.9pm 0.3 M_{rm J}$, and the planet is orbiting a star with a mass $M = 0.22pm 0.06 M_odot$. The second possible configuration (2$sigma$ away) consists of a planet with $M_{rm p}=0.6pm 0.3 M_{rm J}$ and host star with $M=0.14pm 0.06 M_odot$. The system is located in the Galactic disk 3 -- 4 kpc towards the Galactic bulge. In both cases, with an orbit size of 1.5 -- 2.0 AU, the planet is a cold Jupiter -- located well beyond the snow line of the host star. Currently available data make the secure selection of the correct solution difficult, but there are prospects for lifting the degeneracy with additional follow-up observations in the future, when the lens and source star separate.
125 - A. Gould , A. Udalski , I.-G. Shin 2014
We detect a cold, terrestrial planet in a binary-star system using gravitational microlensing. The planet has low mass (2 Earth masses) and lies projected at $a_{perp,ph}$ ~ 0.8 astronomical units (AU) from its host star, similar to the Earth-Sun dis tance. However, the planet temperature is much lower, T<60 Kelvin, because the host star is only 0.10--0.15 solar masses and therefore more than 400 times less luminous than the Sun. The host is itself orbiting a slightly more massive companion with projected separation $a_{perp,ch}=$10--15 AU. Straightforward modification of current microlensing search strategies could increase their sensitivity to planets in binary systems. With more detections, such binary-star/planetary systems could place constraints on models of planet formation and evolution. This detection is consistent with such systems being very common.
71 - I.-G. Shin , T. Sumi , A. Udalski 2012
Microlensing can provide an important tool to study binaries, especially those composed of faint or dark objects. However, accurate analysis of binary-lens light curves is often hampered by the well-known degeneracy between close (s<1) and wide (s>1) binaries, which can be very severe due to an intrinsic symmetry in the lens equation. Here s is the normalized projected binary separation. In this paper, we propose a method that can resolve the close/wide degeneracy using the effect of a lens orbital motion on lensing light curves. The method is based on the fact that the orbital effect tends to be important for close binaries while it is negligible for wide binaries. We demonstrate the usefulness of the method by applying it to an actually observed binary-lens event MOA-2011-BLG-040/OGLE-2011-BLG-0001, which suffers from severe close/wide degeneracy. From this, we are able to uniquely specify that the lens is composed of K and M-type dwarfs located at ~3.5 kpc from the Earth.
83 - I.-G. Shin , C. Han , A. Gould 2012
Brown dwarfs are important objects because they may provide a missing link between stars and planets, two populations that have dramatically different formation history. In this paper, we present the candidate binaries with brown dwarf companions tha t are found by analyzing binary microlensing events discovered during 2004 - 2011 observation seasons. Based on the low mass ratio criterion of q < 0.2, we found 7 candidate events, including OGLE-2004-BLG-035, OGLE-2004-BLG-039, OGLE-2007-BLG-006, OGLE-2007-BLG-399/MOA-2007-BLG-334, MOA-2011-BLG-104/OGLE-2011-BLG-0172, MOA-2011-BLG-149, and MOA-201-BLG-278/OGLE-2011-BLG-012N. Among them, we are able to confirm that the companions of the lenses of MOA-2011-BLG-104/OGLE-2011-BLG-0172 and MOA-2011-BLG-149 are brown dwarfs by determining the mass of the lens based on the simultaneous measurement of the Einstein radius and the lens parallax. The measured mass of the brown dwarf companions are (0.02 +/- 0.01) M_Sun and (0.019 +/- 0.002) M_Sun for MOA-2011-BLG-104/OGLE-2011-BLG-0172 and MOA-2011-BLG-149, respectively, and both companions are orbiting low mass M dwarf host stars. More microlensing brown dwarfs are expected to be detected as the number of lensing events with well covered light curves increases with new generation searches.
125 - E. Bachelet , I.-G. Shin , C. Han 2012
Microlensing detections of cool planets are important for the construction of an unbiased sample to estimate the frequency of planets beyond the snow line, which is where giant planets are thought to form according to the core accretion theory of pla net formation. In this paper, we report the discovery of a giant planet detected from the analysis of the light curve of a high-magnification microlensing event MOA-2010-BLG-477. The measured planet-star mass ratio is $q=(2.181pm0.004)times 10^{-3}$ and the projected separation is $s=1.1228pm0.0006$ in units of the Einstein radius. The angular Einstein radius is unusually large $theta_{rm E}=1.38pm 0.11$ mas. Combining this measurement with constraints on the microlens parallax and the lens flux, we can only limit the host mass to the range $0.13<M/M_odot<1.0$. In this particular case, the strong degeneracy between microlensing parallax and planet orbital motion prevents us from measuring more accurate host and planet masses. However, we find that adding Bayesian priors from two effects (Galactic model and Keplerian orbit) each independently favors the upper end of this mass range, yielding star and planet masses of $M_*=0.67^{+0.33}_{-0.13} M_odot$ and $m_p=1.5^{+0.8}_{-0.3} M_{rm JUP}$ at a distance of $D=2.3pm0.6$ kpc, and with a semi-major axis of $a=2^{+3}_{-1}$ AU. Finally, we show that the lens mass can be determined from future high-resolution near-IR adaptive optics observations independently from two effects, photometric and astrometric.
105 - J.-Y. Choi , I.-G. Shin , C. Han 2012
High-magnification microlensing events provide an important channel to detect planets. Perturbations near the peak of a high-magnification event can be produced either by a planet or a binary companion. It is known that central perturbations induced by both types of companions can be generally distinguished due to the basically different magnification pattern around caustics. In this paper, we present a case of central perturbations for which it is difficult to distinguish the planetary and binary interpretations. The peak of a lensing light curve affected by this perturbation appears to be blunt and flat. For a planetary case, this perturbation occurs when the source trajectory passes the negative perturbation region behind the back end of an arrowhead-shaped central caustic. For a binary case, a similar perturbation occurs for a source trajectory passing through the negative perturbation region between two cusps of an astroid-shaped caustic. We demonstrate the degeneracy for 2 high-magnification events of OGLE-2011-BLG-0526 and OGLE-2011-BLG-0950/MOA-2011-BLG-336. For OGLE-2011-BLG-0526, the $chi^2$ difference between the planetary and binary model is $sim$ 3, implying that the degeneracy is very severe. For OGLE-2011-BLG-0950/MOA-2011-BLG-336, the stellar binary model is formally excluded with $Delta chi^2 sim$ 105 and the planetary model is preferred. However, it is difficult to claim a planet discovery because systematic residuals of data from the planetary model are larger than the difference between the planetary and binary models. Considering that 2 events observed during a single season suffer from such a degeneracy, it is expected that central perturbations experiencing this type of degeneracy is common.
82 - I.-G. Shin , C. Han , J.-Y. Choi 2012
Despite astrophysical importance of binary star systems, detections are limited to those located in small ranges of separations, distances, and masses and thus it is necessary to use a variety of observational techniques for a complete view of stella r multiplicity across a broad range of physical parameters. In this paper, we report the detections and measurements of 2 binaries discovered from observations of microlensing events MOA-2011-BLG-090 and OGLE-2011-BLG-0417. Determinations of the binary masses are possible by simultaneously measuring the Einstein radius and the lens parallax. The measured masses of the binary components are 0.43 $M_{odot}$ and 0.39 $M_{odot}$ for MOA-2011-BLG-090 and 0.57 $M_{odot}$ and 0.17 $M_{odot}$ for OGLE-2011-BLG-0417 and thus both lens components of MOA-2011-BLG-090 and one component of OGLE-2011-BLG-0417 are M dwarfs, demonstrating the usefulness of microlensing in detecting binaries composed of low-mass components. From modeling of the light curves considering full Keplerian motion of the lens, we also measure the orbital parameters of the binaries. The blended light of OGLE-2011-BLG-0417 comes very likely from the lens itself, making it possible to check the microlensing orbital solution by follow-up radial-velocity observation. For both events, the caustic-crossing parts of the light curves, which are critical for determining the physical lens parameters, were resolved by high-cadence survey observations and thus it is expected that the number of microlensing binaries with measured physical parameters will increase in the future.
We present the analysis of the light curves of 9 high-magnification single-lens gravitational microlensing events with lenses passing over source stars, including OGLE-2004-BLG-254, MOA-2007-BLG-176, MOA-2007-BLG-233/OGLE-2007-BLG-302, MOA-2009-BLG-1 74, MOA-2010-BLG-436, MOA-2011-BLG-093, MOA-2011-BLG-274, OGLE-2011-BLG-0990/MOA-2011-BLG-300, and OGLE-2011-BLG-1101/MOA-2011-BLG-325. For all events, we measure the linear limb-darkening coefficients of the surface brightness profile of source stars by measuring the deviation of the light curves near the peak affected by the finite-source effect. For 7 events, we measure the Einstein radii and the lens-source relative proper motions. Among them, 5 events are found to have Einstein radii less than 0.2 mas, making the lenses candidates of very low-mass stars or brown dwarfs. For MOA-2011-BLG-274, especially, the small Einstein radius of $theta_{rm E}sim 0.08$ mas combined with the short time scale of $t_{rm E}sim 2.7$ days suggests the possibility that the lens is a free-floating planet. For MOA-2009-BLG-174, we measure the lens parallax and thus uniquely determine the physical parameters of the lens. We also find that the measured lens mass of $sim 0.84 M_odot$ is consistent with that of a star blended with the source, suggesting that the blend is likely to be the lens. Although we find planetary signals for none of events, we provide exclusion diagrams showing the confidence levels excluding the existence of a planet as a function of the separation and mass ratio.
Microlensing can provide a useful tool to probe binary distributions down to low-mass limits of binary companions. In this paper, we analyze the light curves of 8 binary lensing events detected through the channel of high-magnification events during the seasons from 2007 to 2010. The perturbations, which are confined near the peak of the light curves, can be easily distinguished from the central perturbations caused by planets. However, the degeneracy between close and wide binary solutions cannot be resolved with a $3sigma$ confidence level for 3 events, implying that the degeneracy would be an important obstacle in studying binary distributions. The dependence of the degeneracy on the lensing parameters is consistent with a theoretic prediction that the degeneracy becomes severe as the binary separation and the mass ratio deviate from the values of resonant caustics. The measured mass ratio of the event OGLE-2008-BLG-510/MOA-2008-BLG-369 is $qsim 0.1$, making the companion of the lens a strong brown-dwarf candidate.
118 - I.-G. Shin , A. Udalski , C. Han 2011
We present the analysis result of a gravitational binary-lensing event OGLE-2005-BLG-018. The light curve of the event is characterized by 2 adjacent strong features and a single weak feature separated from the strong features. The light curve exhibi ts noticeable deviations from the best-fit model based on standard binary parameters. To explain the deviation, we test models including various higher-order effects of the motions of the observer, source, and lens. From this, we find that it is necessary to account for the orbital motion of the lens in describing the light curve. From modeling of the light curve considering the parallax effect and Keplerian orbital motion, we are able to measure not only the physical parameters but also a complete orbital solution of the lens system. It is found that the event was produced by a binary lens located in the Galactic bulge with a distance $6.7pm 0.3$ kpc from the Earth. The individual lens components with masses $0.9pm 0.3 M_odot$ and $0.5pm 0.1 M_odot$ are separated with a semi-major axis of $a=2.5 pm 1.0$ AU and orbiting each other with a period $P=3.1 pm 1.3$ yr. The event demonstrates that it is possible to extract detailed information about binary lens systems from well-resolved lensing light curves.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا