ترغب بنشر مسار تعليمي؟ اضغط هنا

We discuss the design and implementation of thin film superconducting coplanar waveguide micro- resonators for pulsed ESR experiments. The performance of the resonators with P doped Si epilayer samples is compared to waveguide resonators under equiva lent conditions. The high achievable filling factor even for small sized samples and the relatively high Q-factor result in a sensitivity that is superior to that of conventional waveguide resonators, in particular to spins close to the sample surface. The peak microwave power is on the order of a few microwatts, which is compatible with measurements at ultra low temperatures. We also discuss the effect of the nonuniform microwave magnetic field on the Hahn echo power dependence.
Superconducting quantum circuits based on Josephson junctions have made rapid progress in demonstrating quantum behavior and scalability. However, the future prospects ultimately depend upon the intrinsic coherence of Josephson junctions, and whether superconducting qubits can be adequately isolated from their environment. We introduce a new architecture for superconducting quantum circuits employing a three dimensional resonator that suppresses qubit decoherence while maintaining sufficient coupling to the control signal. With the new architecture, we demonstrate that Josephson junction qubits are highly coherent, with $T_2 sim 10 mu$s to $20 mu$s without the use of spin echo, and highly stable, showing no evidence for $1/f$ critical current noise. These results suggest that the overall quality of Josephson junctions in these qubits will allow error rates of a few $10^{-4}$, approaching the error correction threshold.
Electron spins in solids are promising candidates for quantum memories for superconducting qubits because they can have long coherence times, large collective couplings, and many quantum bits can be encoded into the spin-waves of a single ensemble. W e demonstrate the coupling of electron spin ensembles to a superconducting transmission-line resonator at coupling strengths greatly exceeding the cavity decay rate and comparable to spin linewidth. We also use the enhanced coupling afforded by the small cross-section of the transmission line to perform broadband spectroscopy of ruby at millikelvin temperatures at low powers. In addition, we observe hyperfine structure in diamond P1 centers and time domain saturation-relaxation of the spins.
The driven-damped Jaynes-Cummings model in the regime of strong coupling is found to exhibit a coexistence between the quantum photon blockaded state and a quasi-coherent bright state. We characterize the slow time scales and the basin of attraction of these metastable states using full quantum simulations. This form of bistability can be useful for implementing a qubit readout scheme that does not require additional circuit elements. We propose a coherent control sequence that makes use of a simple linear chirp of drive amplitude and frequency as well as qubit frequency. By optimizing the parameters of the system and the control pulse we demonstrate theoretically very high readout fidelities (>98%) and high contrast, with experimentally realistic parameters for qubits implemented in the circuit QED architecture.
Single atoms absorb and emit light from a resonant laser beam photon by photon. We show that a single atom strongly coupled to an optical cavity can absorb and emit resonant photons in pairs. The effect is observed in a photon correlation experiment on the light transmitted through the cavity. We find that the atom-cavity system transforms a random stream of input photons into a correlated stream of output photons, thereby acting as a two-photon gateway. The phenomenon has its origin in the quantum anharmonicity of the energy structure of the atom-cavity system. Future applications could include the controlled interaction of two photons by means of one atom.
Optical nonlinearities typically require macroscopic media, thereby making their implementation at the quantum level an outstanding challenge. Here we demonstrate a nonlinearity for one atom enclosed by two highly reflecting mirrors. We send laser li ght through the input mirror and record the light from the output mirror of the cavity. For weak laser intensity, we find the vacuum-Rabi resonances. But for higher intensities, we find an additional resonance. It originates from the fact that the cavity can accommodate only an integer number of photons and that this photon number determines the characteristic frequencies of the coupled atom-cavity system. We selectively excite such a frequency by depositing at once two photons into the system and find a transmission which increases with the laser intensity squared. The nonlinearity differs from classical saturation nonlinearities and is direct spectroscopic proof of the quantum nature of the atom-cavity system. It provides a photon-photon interaction by means of one atom, and constitutes a step towards a two-photon gateway or a single-photon transistor.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا