ترغب بنشر مسار تعليمي؟ اضغط هنا

Rapid and cost-effective DNA sequencing at the single nucleotide level might be achieved by measuring a transverse electronic current as single-stranded DNA is pulled through a nano-sized pore. In order to enhance the electronic coupling between the nucleotides and the electrodes and hence the current signals, we employ a pair of single-walled close-ended (6,6) carbon nanotubes (CNTs) as electrodes. We then investigate the electron transport properties of nucleotides sandwiched between such electrodes by using first-principles quantum transport theory. In particular we consider the extreme case where the separation between the electrodes is the smallest possible that still allows the DNA translocation. The benzene-like ring at the end cap of the CNT can strongly couple with the nucleobases and therefore both reduce conformational fluctuations and significantly improve the conductance. The optimal molecular configurations, at which the nucleotides strongly couple to the CNTs, and which yield the largest transmission, are first identified. Then the electronic structures and the electron transport of these optimal configurations are analyzed. The typical tunneling currents are of the order of 50 nA for voltages up to 1 V. At higher bias, where resonant transport through the molecular states is possible, the current is of the order of several $mu$A. Below 1 V the currents associated to the different nucleotides are consistently distinguishable, with adenine having the largest current, guanine the second-largest, cytosine the third and finally thymine the smallest. We further calculate the transmission coefficient profiles as the nucleotides are dragged along the DNA translocation path and investigate the effects of configurational variations. Based on these results we propose a DNA sequencing protocol combining three possible data analysis strategies.
The bias-dependent transport properties of short poly(G)-poly(C) A-DNA strands attached to Au electrodes are investigated with first principles electronic transport methods. By using the non- equilibrium Greens function approach combined with self-in teraction corrected density functional theory, we calculate the fully self-consistent coherent I-V curve of various double-strand polymeric DNA fragments. We show that electronic wave-function localization, induced either by the native electrical dipole and/or by the electrostatic disorder originating from the first few water solvation layers, drastically suppresses the magnitude of the elastic conductance of A-DNA oligonucleotides. We then argue that electron transport through DNA is the result of sequence-specific short-range tunneling across a few bases combined with general diffusive/inelastic processes.
We demonstrate that the different magnetic states of a Mn12 molecule can be distinguished in a two-probe transport experiment from a complete knowledge of the current-voltage curve. Our results, obtained with state-of-the-art non-equilibrium transpor t methods combined with density functional theory, demonstrate that spin configuration-specific negative differential resistances (NDRs) appear in the I-V curves. These originate from the interplay between electron localization and the re-hybridization of the molecular levels in an external electric field and allow the detection of the molecules spin-state.
In this work, we calculate with ab initio methods the current-voltage characteristics for ideal single- and double-barrier Fe/MgO (001) magnetic tunnel junctions. The current is calculated in the phase-coherent limit by using the recently developed S MEAGOL code, combining the nonequilibrium Green function formalism with density-functional theory. In general we find that double-barrier junctions display a larger magnetoresistance, which decays with bias at a slower pace than their single-barrier counterparts. This is explained in terms of enhanced spin filtering from the middle Fe layer sandwiched in between the two MgO barriers. In addition, for double-barrier tunnel junctions, we find a well defined peak in the magnetoresistance at a voltage of V=0.1 V. This is the signature of resonant tunneling across a majority quantum well state. Our findings are discussed in relation to recent experiments.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا