ترغب بنشر مسار تعليمي؟ اضغط هنا

I-V curves of Fe/MgO (001) single- and double-barrier tunnel junctions

453   0   0.0 ( 0 )
 نشر من قبل Jeronimo Peralta Ramos
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we calculate with ab initio methods the current-voltage characteristics for ideal single- and double-barrier Fe/MgO (001) magnetic tunnel junctions. The current is calculated in the phase-coherent limit by using the recently developed SMEAGOL code, combining the nonequilibrium Green function formalism with density-functional theory. In general we find that double-barrier junctions display a larger magnetoresistance, which decays with bias at a slower pace than their single-barrier counterparts. This is explained in terms of enhanced spin filtering from the middle Fe layer sandwiched in between the two MgO barriers. In addition, for double-barrier tunnel junctions, we find a well defined peak in the magnetoresistance at a voltage of V=0.1 V. This is the signature of resonant tunneling across a majority quantum well state. Our findings are discussed in relation to recent experiments.



قيم البحث

اقرأ أيضاً

385 - J. Peralta-Ramos , , A. M. Llois 2008
In this contribution, we calculate in a self-consistent way the ballistic transmission as a function of energy of one Fe/MgO (001) single-barrier and one double-barrier tunnel junction, relating them to their electronic structure. The transmission sp ectra of each kind of junction is calculated at different applied bias voltages. We focus on the impact that bias has on the resonant tunneling mediated by surface and quantum well states. The calculations are done in the coherent regime, using a combination of density functional theory and non-equilibrium Greens functions, as implemented in the {it ab initio} code {it SMEAGOL}. We conclude that, for both kinds of junction, the transmission functions depend on the applied bias voltage. In the single-barrier junction, transport mediated by resonant Fe minority surface states is rapidly destroyed by bias. In the double-barrier junction, the appearance of resonant tunneling through majority quantum well states is strongly affected by bias.
Alloying Fe electrodes with V, through reduced FeV/MgO interface mismatch in epitaxial magnetic tunnel junctions with MgO barriers, notably suppresses both nonmagnetic (parallel) and magnetic (antiparallel) state 1/f noise and enhances tunnelling mag netoresistance (TMR). A comparative study of the room temperature electron transport and low frequency noise in Fe1-xVx/MgO/Fe and Fe/MgO/Fe1-xVx MTJs with 0 <= x <= 0.25 reveals that V doping of the bottom electrode for x < 0.1 reduces in nearly 2 orders of magnitude the normalized nonmagnetic and magnetic 1/f noise. We attribute the enhanced TMR and suppressed 1/f noise to strongly reduced misfit and dislocation density.
We investigated the dependence of giant tunnel magnetoresistance (TMR) on the thickness of an MgO barrier and on the annealing temperature of sputtered CoFeB/MgO/CoFeB magnetic tunnel junctions deposited on SiO2/Si wafers. The resistance-area product exponentially increases with MgO thickness, indicating that the quality of MgO barriers is high in the investigated thickness range of 1.15-2.4 nm. High-resolution transmission electron microscope images show that annealing at 375 C results in the formation of crystalline CoFeB/MgO/CoFeB structures, even though CoFeB electrodes are amorphous in the as-sputtered state. The TMR ratio increases with annealing temperature and is as high as 260% at room temperature and 403% at 5 K.
198 - A. Hallal , B. Dieny , M. Chshiev 2014
Using first-principles calculations, we investigated the impact of chromium (Cr) and vanadium (V) impurities on the magnetic anisotropy and spin polarization in Fe/MgO magnetic tunnel junctions. It is demonstrated using layer resolved anisotropy calc ulation technique, that while the impurity near the interface has a drastic effect in decreasing the perpendicular magnetic anisotropy (PMA), its position within the bulk allows maintaining high surface PMA. Moreover, the effective magnetic anisotropy has a strong tendency to go from in-plane to out-of-plane character as a function of Cr and V concentration favoring out-of-plane magnetization direction for ~1.5 nm thick Fe layers at impurity concentrations above 20 %. At the same time, spin polarization is not affected and even enhanced in most situations favoring an increase of tunnel magnetoresistance (TMR) values.
252 - Xiaobing Feng 2008
The interface structure of Fe/MgO(100) magnetic tunnel junctions predicted by density functional theory (DFT) depends significantly on the choice of exchange and correlation functional. Bader analysis reveals that structures obtained by relaxing the cell with the local spin-density approximation (LSDA) display a different charge transfer than those relaxed with the generalized gradient approximation (GGA). As a consequence, the electronic transport is found to be extremely sensitive to the interface structure. In particular, the conductance for the LSDA-relaxed geometry is about one order of magnitude smaller than that of the GGA-relaxed one. The high sensitivity of the electronic current to the details of the interface might explain the discrepancy between the experimental and calculated values of magnetoresistance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا