ترغب بنشر مسار تعليمي؟ اضغط هنا

The experimental data from quasielastic electron scattering from $^{12}$C are reanalyzed in terms of a new scaling variable suggested by the interacting relativistic Fermi gas with scalar and vector interactions, which is known to generate a relativi stic effective mass for the interacting nucleons. By choosing a mean value of this relativistic effective mass $m_N^* =0.8 m_N$, we observe that most of the data fall inside a region around the inverse parabola-shaped universal scaling function of the relativistic Fermi gas. This suggests a method to select the subset of data that highlight the quasielastic region, about two thirds of the total 2,500 data. Regardless of the momentum and energy transfer, this method automatically excludes the data that are not dominated by the quasielastic process. The resulting band of data reflects deviations from the perfect universality, and can be used to characterize experimentally the quasielastic peak, despite the manifest scaling violation. Moreover we show that the spread of the data around the scaling function can be interpreted as genuine fluctuations of the effective mass $M^* equiv m^*_N/m_N sim 0.8 pm 0.1$. Applying the same procedure we transport the scaling quasielastic band into a theoretical prediction band for neutrino scattering cross section that is compatible with the recent measurements and slightly more accurate.
The strange particle production induced by (anti)neutrino off nucleon has been studied for $|Delta S|=0$ and $|Delta S|=1$ channels. The reactions those we have considered are for the production of single kaon/antikaon, eta and associated particle production processes. We have developed a microscopical model based on the SU(3) chiral Lagrangian. The basic parameters of the model are $f_pi$, the pion decay constant, Cabibbo angle, the proton and neutron magnetic moments and the axial vector coupling constants for the baryons octet. For antikaon production we have also included $Sigma^*$(1385) resonance and for eta production $S_{11}$(1535) and $S_{11}$(1650) resonances are included.
114 - J. Nieves , R. Gran , I. Ruiz Simo 2014
RPA correlations, spectral function and 2p2h (multi-nucleon) effects on charged-current neutrino-nucleus reactions without emitted pions are discussed. We pay attention to the influence of RPA and multi-nucleon mechanisms on the MiniBooNE and MINERvA flux folded differential cross sections, the MiniBooNE flux unfolded total cross section and the neutrino energy reconstruction.
The angular distribution of the phase space arising in two-particle emission reactions induced by electrons and neutrinos is computed in the laboratory (Lab) system by boosting the isotropic distribution in the center of mass (CM) system used in Mont e Carlo generators. The Lab distribution has a singularity for some angular values, coming from the Jacobian of the angular transformation between CM and Lab systems. We recover the formula we obtained in a previous calculation for the Lab angular distribution. This is in accordance with the Monte Carlo method used to generate two-particle events for neutrino scatteringcite{Sob12}. Inversely, by performing the transformation to the CM system, it can be shown that the phase-space function, which is proportional to the two particle-two hole (2p-2h) hadronic tensor for a constant current operator, can be computed analytically in the frozen nucleon approximation, if Pauli blocking is absent. The results in the CM frame confirm our previous work done using an alternative approach in the Lab frame. The possibilities of using this method to compute the hadronic tensor by a boost to the CM system are analyzed.
Two-particle two-hole contributions to electroweak response functions are computed in a fully relativistic Fermi gas, assuming that the electroweak current matrix elements are independent of the kinematics. We analyze the genuine kinematical and rela tivistic effects before including a realistic meson-exchange current (MEC) operator. This allows one to study the mathematical properties of the non-trivial seven-dimensional integrals appearing in the calculation and to design an optimal numerical procedure to reduce the computation time. This is required for practical applications to CC neutrino scattering experiments, where an additional integral over the neutrino flux is performed. Finally we examine the viability of this model to compute the electroweak 2p-2h response functions.
We have studied nuclear medium effects in the weak structure functions $F^A_2(x)$ and $F^A_3(x)$ and in the extraction of weak mixing angle using Paschos Wolfenstein(PW) relation. We have modified the PW relation for nonisoscalar nuclear target. We have incorporated the medium effects like Pauli blocking, Fermi motion, nuclear binding energy, nucleon correlations, pion $&$ rho cloud contributions, and shadowing and antishadowing effects.
We obatin the ratio $F_i^A/F_i^{D}$(i=2,3, A=Be, C, Fe, Pb; D=Deuteron) in the case of weak and electromagnetic nuclear structure functions. For this, relativistic nuclear spectral function which incorporate the effects of Fermi motion, binding and n ucleon correlations is used. We also consider the pion and rho meson cloud contributions and shadowing and antishadowing effects.
We evaluate the quasielastic and multinucleon contributions to the antineutrino nucleus scattering cross section and compare our results with the recent MiniBooNE data. We use a local Fermi gas model that includes RPA correlations and gets the multin ucleon part from a systematic many body expansion of the $W$ boson selfenergy in the nuclear medium. The same model had been quite successful for the neutrino cross section and contains no new parameters. We have also analysed the relevance of 2p2h events for the antineutrino energy reconstruction.
The charged-current double differential neutrino cross section, measured by the MiniBooNE Collaboration, has been analyzed using a microscopical model that accounts for, among other nuclear effects, long range nuclear (RPA) correlations and multinucl eon scattering. We find that MiniBooNE data are fully compatible with the world average of the nucleon axial mass in contrast with several previous analyses which have suggested an anomalously large value. We also discuss the reliability of the algorithm used to estimate the neutrino energy.
The weak kaon production off the nucleon induced by neutrinos is studied at the low and intermediate energies of interest for some ongoing and future neutrino oscillation experiments. This process is also potentially important for the analysis of pro ton decay experiments. We develop a microscopical model based on the SU(3) chiral Lagrangians. The basic parameters of the model are fpi, the pion decay constant, Cabibbos angle, the proton and neutron magnetic moments and the axial vector coupling constants for the baryons octet, D and F, that are obtained from the analysis of the semileptonic decays of neutron and hyperons. The studied mechanisms are the main source of kaon production for neutrino energies up to 1.2 to 1.5 GeV for the various channels and the cross sections are large enough to be amenable to be measured by experiments such as Minerva and T2K.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا