ترغب بنشر مسار تعليمي؟ اضغط هنا

CARMENES (Calar Alto high-Resolution search for M dwarfs with Exo-earths with Near-infrared and optical Echelle Spectrographs) is a next generation instrument being built for the 3.5-m telescope at the Calar Alto Observatory by a consortium of eleven Spanish and German institutions. Conducting a five-year exoplanet survey targeting 300 M dwarfs with the completed instrument is an integral part of the project. The CARMENES instrument consists of two separate echelle spectrographs covering the wavelength range from 550 to 1700 nm at a spectral resolution of R=82,000, fed by fibers from the Cassegrain focus of the telescope. The spectrographs are housed in vacuum tanks providing the temperature-stabilized environments necessary to enable a 1 m/s radial velocity precision employing a simultaneous calibration with emission-line lamps.
According to theory, high energy emission from the coronae of cool stars can severely erode the atmosphere of orbiting planets. To test the long term effects of the erosion we study a large sample of planet-hosting stars observed in X-rays. The resul ts reveal that massive planets (Mp sin i > 1.5 Mj) may survive only if exposed to low accumulated coronal radiation. The planet HD 209458 b might have lost more than 1 Mj already, and other cases, like tau Boo b, could be losing mass at a rate of 3.4 Earth masses per Gyr. The strongest erosive effects would take place during the first stages of the stellar life, when the faster rotation generates more energetic coronal radiation. The planets with higher density seem to resist better the radiation effects, as foreseen by models. Current models need to be improved to explain the observed distribution of planetary masses with the coronal radiation received.
In recent years, analyses of eclipsing binary systems have unveiled differences between the observed fundamental properties of low-mass stars and those predicted by stellar structure models. Particularly, radius and effective temperatures computed fr om models are ~ 5-10% lower and ~ 3-5% higher than observed, respectively. These discrepancies have been attributed to different factors, notably to the high levels of magnetic activity present on these stars. In this paper, we test the effect of magnetic activity both on models and on the observational analysis of eclipsing binaries using a sample of such systems with accurate fundamental properties. Regarding stellar models, we have found that unrealistically high spot coverages need to be assumed to reproduce the observations. Tests considering metallicity effects and missing opacities on models indicate that these are not able to explain the radius discrepancies observed. With respect to the observations, we have tested the effect of several spot distributions on the light curve analysis. Our results show that spots cause systematic deviations on the stellar radii derived from light curve analysis when distributed mainly over the stellar poles. Assuming the existence of polar spots, overall agreement between models and observations is reached when ~ 35% spot coverage is considered on stellar models. Such spot coverage induces a systematic deviation in the radius determination from the light curve analysis of ~ 3% and is also compatible with the modulations observed on the light curves of these systems. Finally, we have found that the effect of activity or rotation on convective transport in partially radiative stars may also contribute to explain the differences seen in some of the systems with shorter orbital periods.
Short-period high-amplitude pulsating stars of Population I ($delta$ Sct stars) and II (SX Phe variables) exist in the lower part of the classical (Cepheid) instability strip. Most of them have very simple pulsational behaviours, only one or two radi al modes being excited. Nevertheless, BL Cam is a unique object among them, being an extreme metal-deficient field high-amplitude SX Phe variable with a large number of frequencies. Based on a frequency analysis, a pulsational interpretation was previously given. aims heading (mandatory) We attempt to interpret the long-term behaviour of the residuals that were not taken into account in the previous Observed-Calculated (O-C) short-term analyses. methods heading (mandatory) An investigation of the O-C times has been carried out, using a data set based on the previous published times of light maxima, largely enriched by those obtained during an intensive multisite photometric campaign of BL Cam lasting several months. results heading (mandatory) In addition to a positive (161 $pm$ 3) x 10$^{-9}$ yr$^{-1}$ secular relative increase in the main pulsation period of BL Cam, we detected in the O-C data short- (144.2 d) and long-term ($sim$ 3400 d) variations, both incompatible with a scenario of stellar evolution. conclusions heading (mandatory) Interpreted as a light travel-time effect, the short-term O-C variation is indicative of a massive stellar component (0.46 to 1 M$_{sun}$) with a short period orbit (144.2 d), within a distance of 0.7 AU from the primary. More observations are needed to confirm the long-term O-C variations: if they were also to be caused by a light travel-time effect, they could be interpreted in terms of a third component, in this case probably a brown dwarf star ($geq$ 0.03 M$_{sun}$), orbiting in $sim$ 3400 d at a distance of 4.5 AU from the primary.
72 - I. Ribas 2010
The early evolution of Earths atmosphere and the origin of life took place at a time when physical conditions at the Earth where radically different from its present state. The radiative input from the Sun was much enhanced in the high-energy spectra l domain, and in order to model early planetary atmospheres in detail, a knowledge of the solar radiative input is needed. We present an investigation of the atmospheric parameters, state of evolution and high-energy fluxes of the nearby star kap^1 Cet, previously thought to have properties resembling those of the early Sun. Atmospheric parameters were derived from the excitation/ionization equilibrium of Fe I and Fe II, profile fitting of Halpha and the spectral energy distribution. The UV irradiance was derived from FUSE and HST data, and the absolute chromospheric flux from the Halpha line core. From careful spectral analysis and the comparison of different methods we propose for kap^1 Cet the following atmospheric parameters: Teff = 5665+/-30 K (Halpha profile and energy distribution), log g = 4.49+/-0.05 dex (evolutionary and spectroscopic) and [Fe/H] = +0.10+/-0.05 dex (Fe II lines). The UV radiative properties of kap^1 Cet indicate that its flux is some 35% lower than the current Suns between 210 and 300 nm, it matches the Suns at 170 nm and increases to at least 2-7 times higher than the Suns between 110 and 140 nm. The use of several indicators ascribes an age to kap^1 Cet in the interval ~0.4-0.8 Gyr and the analysis of the theoretical HR diagram suggests a mass ~1.04 Msun. This star is thus a very close analog of the Sun when life arose on Earth and Mars is thought to have lost its surface bodies of liquid water. Photochemical models indicate that the enhanced UV emission leads to a significant increase in photodissociation rates compared with those commonly assumed of the early Earth. Our results show that reliable calculations of the chemical composition of early planetary atmospheres need to account for the stronger solar photodissociating UV irradiation.
The recently discovered eclipsing binary system TYC 2675-663-1 is a X-ray source, and shows properties in the optical that are similar to the W UMa systems, but are somewhat unusual compared to what is seen in other contact binary systems. The goal o f this work is to characterize its properties and investigate its nature by means of detailed photometric and spectroscopic observations. We have performed extensive V-band photometric measurements with the INTEGRAL satellite along with ground-based multi-band photometric observations, as well as high-resolution spectroscopic monitoring from which we have measured the radial velocities of the components. These data have been analysed to determine the stellar properties, including the absolute masses and radii. Additional low-resolution spectroscopy was obtained to investigate spectral features. From the measured eclipse timings we determine an orbital period for the binary of P=0.4223576+-0.0000009 days. The light-curve and spectroscopic analyses reveal the observations to be well represented by a model of an overcontact system composed of main-sequence F5 and G7 stars (temperature difference of nearly 1000 K), with the possible presence of a third star. Low-resolution optical spectroscopy reveals a complex H alpha emission, and other features that are not yet understood. The unusually large mass ratio of q=0.81+-0.05 places it in the rare H (high mass ratio) subclass of the W UMa systems, which are presumably on their way to coalescence.
Spectroscopic and eclipsing binary systems offer the best means for determining accurate physical properties of stars, including their masses and radii. The data available for low-mass stars have yielded firm evidence that stellar structure models pr edict smaller radii and higher effective temperatures than observed, but the number of systems with detailed analyses is still small. In this paper we present a complete reanalysis of one of such eclipsing systems, CM Dra, composed of two dM4.5 stars. New and existing light curves as well as a radial velocity curve are modeled to measure the physical properties of both components. The masses and radii determined for the components of CM Dra are M1=0.2310+/-0.0009 Msun, M2=0.2141+/-0.0010 Msun, R1=0.2534+/-0.0019 Rsun, and R2=0.2396+/-0.0015 Rsun. With relative uncertainties well below the 1% level, these values constitute the most accurate properties to date for fully convective stars. This makes CM Dra a valuable benchmark for testing theoretical models. In comparing our measurements with theory, we confirm the discrepancies reported previously for other low-mass eclipsing binaries. These discrepancies seem likely to be due to the effects of magnetic activity. We find that the orbit of this system is slightly eccentric, and we have made use of eclipse timings spanning three decades to infer the apsidal motion and other related properties.
Recent analyses of low-mass eclipsing binary stars have unveiled a significant disagreement between the observations and the predictions of stellar structure models. Results show that theoretical models underestimate the radii and overestimate the ef fective temperatures of low-mass stars but yield luminosities that accord with observations. A hypothesis based upon the effects of stellar activity was put forward to explain the discrepancies. In this paper we study the existence of the same trend in single active stars and provide a consistent scenario to explain systematic differences between active and inactive stars in the H-R diagram reported earlier. The analysis is done using single field stars of spectral types late-K and M and computing their bolometric magnitudes and temperatures through infrared colours and spectral indices. The properties of the stars in samples of active and inactive stars are compared statistically to reveal systematic differences. After accounting for a number of possible bias effects, active stars are shown to be cooler than inactive stars of similar luminosity therefore implying a larger radius as well, in proportions that are in excellent agreement with those found from eclipsing binaries. The present results generalise the existence of strong radius and temperature dependences on stellar activity to the entire population of low-mass stars, regardless of their membership in close binary systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا