ترغب بنشر مسار تعليمي؟ اضغط هنا

160 - I. Pillitteri 2015
Hot Jupiters are subject to strong irradiation from the host stars and, as a consequence, they do evaporate. They can also interact with the parent stars by means of tides and magnetic fields. Both phenomena have strong implications for the evolution of these systems. Here we present time resolved spectroscopy of HD~189733 observed with the Cosmic Origin Spectrograph (COS) on board to HST. The star has been observed during five consecutive HST orbits, starting at a secondary transit of the planet ($phi$ ~0.50-0.63). Two main episodes of variability of ion lines of Si, C, N and O are detected, with an increase of line fluxes. Si IV lines show the highest degree of variability. The FUV variability is a signature of enhanced activity in phase with the planet motion, occurring after the planet egress, as already observed three times in X-rays. With the support of MHD simulations, we propose the following interpretation: a stream of gas evaporating from the planet is actively and almost steadily accreting onto the stellar surface, impacting at $70-90deg$ ahead of the sub-planetary point.
Abridged. Here we report on the X-ray activity of the primary star, HD189733 A, using a new XMM-Newton observation and a comparison with the previous X-ray observations. The spectrum in the quiescent intervals is described by two temperatures at 0.2 keV and 0.7 keV, while during the flares a third component at 0.9 keV is detected. We obtain estimates of the electron density in the range $n_e = 1.6 - 13 times 10^{10}$ cm$^{-3}$ and thus the corona of HD189733 A appears denser than the solar one. {For the third time, we observe a large flare that occurred just after the eclipse of the planet. Together with the flares observed in 2009 and 2011, the events are restricted to a small planetary phase range of $phi = 0.55-0.65$. Although we do not find conclusive evidence of a significant excess of flares after the secondary transits, we suggest that the planet might trigger such flares when it passes close to locally high magnetic field of the underlying star at particular combinations of stellar rotational phases and orbital planetary phases. For the most recent flares, a wavelet analysis of the light curve suggests a loop of length of four stellar radii at the location of the bright flare, and a local magnetic field of order of 40-100 G, in agreement with the global field measured in other studies. The loop size suggests an interaction of magnetic nature between planet and star, separated by only $sim8 R_*$. We also detect the stellar companion (HD 189733 B, $sim12$ from the primary star) in this XMM observation. Its very low X-ray luminosity ($L_X = 3.4times 10^{26}$ erg s$^{-1}$) confirms the old age of this star and of the binary system. The high activity of the primary star is best explained by a transfer of angular momentum from the planet to the star.
We present an XMM-Newton survey of the part of Orion A cloud south of the Orion Nebula. This survey includes the Lynds 1641 (L1641) dark cloud, a region of the Orion A cloud with very few massive stars and hence a relatively low ambient UV flux, and the region around the O9 III star Iota Orionis. In addition to proprietary data, we used archival XMM data of the Orion Nebula Cluster (ONC) to extend our analysis to a major fraction of the Orion A cloud. We have detected 1060 X-ray sources in L1641 and Iota Ori region. About 94% of the sources have 2MASS & Spitzer counterparts, 204 and 23 being Class II and Class I or protostars objects, respectively. In addition, we have identified 489 X-ray sources as counterparts to Class III candidates, given they are bright in X-rays and appear as normal photospheres at mid-IR wavelengths. The remaining 205 X-ray sources are likely distant AGNs or other galactic sources not related to Orion A. We find that Class III candidates appear more concentrated in two main clusters in L1641. The first cluster of Class III stars is found toward the northern part of L1641, concentrated around Iota Ori. The stars in this cluster are more evolved than those in the Orion Nebula. We estimate a distance of 300-320 pc for this cluster and thus it is closer than the Orion A cloud. Another cluster rich in Class III stars is located in L1641 South and appears to be a slightly older cluster embedded in the Orion A cloud. Furthermore, other evolved Class III stars are found north of the ONC toward NGC 1977.
We report on the follow-up XMM-Newton observation of the planet-hosting star HD 189733 we obtained in April 2011. We observe a flare just after the secondary transit of the hot Jupiter. This event shares the same phase and many of the characteristics of the flare we observed in 2009. We suggest that a systematic interaction between planet and stellar magnetic fields when the planet passes close to active regions on the star can lead to periodic variability phased with planetary motion. By mean of high resolution X-ray spectroscopy with RGS we determine that the corona of this star is unusually dense.
77 - G. Giardino 2008
AIMS. While observational evidence shows that most of the decline in a stars X-ray activity occurs between the age of the Hyades (~8 x 10^8 yrs) and that of the Sun, very little is known about the evolution of stellar activity between these ages. To gain information on the typical level of coronal activity at a stars intermediate age, we studied the X-ray emission from stars in the 1.9 Gyr old open cluster NGC 752. METHODS. We analysed a ~140 ks Chandra observation of NGC 752 and a ~50 ks XMM-Newton observation of the same cluster. We detected 262 X-ray sources in the Chandra data and 145 sources in the XMM-Newton observation. Around 90% of the catalogued cluster members within Chandras field-of-view are detected in the X-ray. The X-ray luminosity of all observed cluster members (28 stars) and of 11 cluster member candidates was derived. RESULTS. Our data indicate that, at an age of 1.9 Gyr, the typical X-ray luminosity of the cluster members with M=0.8-1.2 Msun is Lx = 1.3 x 10^28 erg s^-1, so approximately a factor of 6 less intense than that observed in the younger Hyades. Given that Lx is proportional to the square of a stars rotational rate, the median Lx of NGC 752 is consistent, for t > 1 Gyr, to a decaying rate in rotational velocities v_rot ~ t^-alpha with alpha ~ 0.75, steeper than the Skumanich relation (alpha ~ 0.5) and significantly steeper than observed between the Pleiades and the Hyades (where alpha < 0.3), suggesting that a change in the rotational regimes of the stellar interiors is taking place at t ~ 1 Gyr.
We present the characteristics of the X-ray variability of stars in the cluster NGC2516 as derived from XMM-Newton/EPIC/pn data. The X-ray variations on short (hours), medium (months), and long (years) time scales have been explored. We detected 303 distinct X-ray sources by analysing six EPIC/pn observations; 194 of them are members of the cluster. Stars of all spectral types, from the early-types to the late-M dwarfs, were detected. The Kolmogorov-Smirnov test applied to the X-ray photon time series shows that, on short time scales, only a relatively small fraction (ranging from 6% to 31% for dG and dF, respectively) of the members of NGC2516 are variable with a confidence level $geq$99%; however, it is possible that the fraction is small only because of the poor statistics. The time X-ray amplitude distribution functions (XAD) of a set of dF7-dK2 stars, derived on short (hours) and medium (months) time scales, seem to suggest that medium-term variations, if present, have a much smaller amplitude than those on short time scales; a similar result is also obtained for dK3-dM stars. The amplitude variations of late-type stars in NGC2516 are consistent with those of the coeval Pleiades stars. Comparing these data with those of ROSAT/PSPC, collected 7-8 years earlier, and of ROSAT/HRI, just 4-5 years earlier, we find no evidence of significant variability on the related time scales, suggesting that long-term variations due to activity cycles similar to the solar cycle are not common among young stars. Indications of spectral variability was found in one star whose spectra at three epochs were available.
129 - G. Giardino 2007
AIMS. We study the variability of the Fe 6.4 KeV emission line from the Class I young stellar object Elias 29 in the Rho-Oph cloud. METHODS. We analysed the data from Elias 29 collected by XMM during a nine-day, nearly continuous observation of the R ho-Oph star-forming region (the Deep Rho-Oph X-ray Observation, named Droxo). The data were subdivided into six homogeneous time intervals, and the six resulting spectra were individually analysed. RESULTS. We detect significant variability in the equivalent width of the Fe 6.4 keV emission line from Elias 29. The 6.4 keV line is absent during the first time interval of observation and appears at its maximum strength during the second time interval (90 ks after Elias 29 undergoes a strong flare). The X-ray thermal emission is unchanged between the two observation segments, while line variability is present at a 99.9% confidence level. Given the significant line variability in the absence of variations in the X-ray ionising continuum and the weakness of the photoionising continuum from the stars thermal X-ray emission, we suggest that the fluorescence may be induced by collisional ionisation from an (unseen) population of non-thermal electrons. We speculate on the possibility that the electrons are accelerated in a reconnection event of a magnetically confined accretion loop, connecting the young star to its circumstellar disk.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا