ترغب بنشر مسار تعليمي؟ اضغط هنا

In the quiet Sun, magnetic fields are usually observed as small-scale magnetic elements, `salt and pepper, covering the entire solar surface. By using 3D radiative MHD numerical simulations we demonstrate that these fields are a result of local dynam o action in the top layers of the convection zone, where extremely weak `seed magnetic fields can locally grow above the mean equipartition field (e.g., from a $10^{-6}$ G `seed field to more than 1000 G magnetic structures). We find that the local dynamo action takes place only in a shallow, about 500 km deep, subsurface layer, from which the generated field is transported into deeper layers by convection downdrafts. We demonstrate that the observed dominance of vertical magnetic fields at the photosphere and the horizontal fields above the photosphere can be explained by multi-scale magnetic loops produced by the dynamo.
The solar surface is covered by high-speed jets transporting mass and energy into the solar corona and feeding the solar wind. The most prominent of these jets have been known as spicules. However, the mechanism initiating these eruptions events is s till unknown. Using realistic numerical simulations we find that small-scale eruptions are produced by ubiquitous magnetized vortex tubes generated by the Suns turbulent convection in subsurface layers. The swirling vortex tubes (resembling tornadoes) penetrate into the solar atmosphere, capture and stretch background magnetic field, and push surrounding material up, generating quasiperiodic shocks. Our simulations reveal a complicated high-speed flow patterns, and thermodynamic and magnetic structure in the erupting vortex tubes. We found that the eruptions are initiated in the subsurface layers and are driven by the high-pressure gradients in the subphotosphere and photosphere, and by the Lorentz force in the higher atmosphere layers.
Investigation of the turbulent properties of solar convection is extremely important for understanding the multi-scale dynamics observed on the solar surface. In particular, recent high-resolution observations have revealed ubiquitous vortical struct ures, and numerical simulations have demonstrated links between vortex tube dynamics and magnetic field organization and have shown the importance of vortex tube interactions in the mechanisms of acoustic wave excitation on the Sun. In this paper we investigate the mechanisms of the formation of vortex tubes in highly-turbulent convective flows near the solar surface by using realistic radiative hydrodynamic LES simulations. Analysis of data from the simulations indicates two basic processes of vortex tube formation: 1) development of small-scale convective instability inside convective granules, and 2) a Kelvin-Helmholtz type instability of shearing flows in intergranular lanes. Our analysis shows that vortex stretching during these processes is a primary source of generation of small-scale vorticity on the Sun.
Despite the known general properties of the solar cycles, a reliable forecast of the 11-year sunspot number variations is still a problem. The difficulties are caused by the apparent chaotic behavior of the sunspot numbers from cycle to cycle and by the influence of various turbulent dynamo processes, which are far from understanding. For predicting the solar cycle properties we make an initial attempt to use the Ensemble Kalman Filter (EnKF), a data assimilation method, which takes into account uncertainties of a dynamo model and measurements, and allows to estimate future observational data. We present the results of forecasting of the solar cycles obtained by the EnKF method in application to a low-mode nonlinear dynamical system modeling the solar $alphaOmega$-dynamo process with variable magnetic helicity. Calculations of the predictions for the previous sunspot cycles show a reasonable agreement with the actual data. This forecast model predicts that the next sunspot cycle will be significantly weaker (by $sim 30%$) than the previous cycle, continuing the trend of low solar activity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا