ترغب بنشر مسار تعليمي؟ اضغط هنا

We have studied the spin correlations with $bf{k}$= ($frac12$, $frac12$, $frac12$) propagation vector which appear below 0.4, K in tbti spin liquid by combining powder neutron diffraction and specific heat on Tb$_{2+x}$Ti$_{2-x}$O$_{7+y}$ samples wit h $x$=0, 0.01, -0.01. The $bf{k}$= ($frac12$, $frac12$, $frac12$) order clearly appears on all neutron patterns by subtracting a pattern at 1.2(1),K. Refining the subtracted patterns at 0.07,K yields two possible spin structures, with spin-ice-like and monopole-like correlations respectively. Mesoscopic correlations involve Tb moments of 1 to 2 mub ordered on a length scale of about 20 AA. In addition, long range order involving a small spin component of 0.1 to 0.2 mub is detected for the $x$= 0 and 0.01 samples showing a peak in the specific heat. Comparison with previous single crystals data suggests that the ($frac12$, $frac12$, $frac12$) order settles in through nanometric spin textures with dominant spin ice character and correlated orientations, analogous to nanomagnetic twins.
We present an interpretation of zero field diffuse neutron scattering and of high field magnetisation data at very low temperature in the frustrated pyrochlore system Tb2Ti2O7. This material has antiferromagnetic exchange interactions and it is expec ted to have Ising character at low temperature. Contrary to expectations, it shows no magnetic ordering down to 0.05,K, being thus labelled a spin liquid. However, the ground state in Tb2Ti2O7 is not a mere fluctuating moment paramagnet but, as demonstrated by very recent experiments, a state where the electronic degrees of freedom are hybridised with the phononic variables in an unconventional way. We show here that, by approximating this complex and still unraveled electron-phonon interaction by a dynamic Jahn-Teller coupling, one can account rather well for the diffuse neutron scattering and the low temperature isothermal magnetisation. We discuss the shortcomings of this picture which arise mainly from the fact that the singlet electronic mean field ground state of the model fails to reproduce the observed strong intensity of the elastic and quasi-elastic neutron scattering.
We present a detailed low-temperature investigation of the statics and dynamics of the anions and methyl groups in the organic conductors (TMTSF)$_2$PF$_6$ and (TMTSF)$_2$AsF$_6$ (TMTSF : tetramethyl-tetraselenafulvalene). The 4 K neutron scattering structure refinement of the fully deuterated (TMTSF)$_2$PF$_6$-D12 salt allows locating precisely the methyl groups at 4 K. This structure is compared to the one of the fully hydrogenated (TMTSF)$_2$PF$_6$-H12 salt previously determined at the same temperature. Surprisingly it is found that deuteration corresponds to the application of a negative pressure of 5 x 10$^2$ MPa to the H12 salt. Accurate measurements of the Bragg intensity show anomalous thermal variations at low temperature both in the deuterated PF$_6$ and AsF$_6$ salts. Two different thermal behaviors have been distinguished. Low-Bragg-angle measurements reflect the presence of low-frequency modes at characteristic energies {theta}$_E$ = 8.3 K and {theta}$_E$ = 6.7 K for the PF$_6$-D12 and AsF$_6$-D12 salts, respectively. These modes correspond to the low-temperature methyl group motion. Large-Bragg-angle measurements evidence an unexpected structural change around 55 K which probably corresponds to the linkage of the anions to the methyl groups via the formation of F...D-CD2 bonds observed in the 4 K structural refinement. Finally we show that the thermal expansion coefficient of (TMTSF)$_2$PF$_6$ is dominated by the librational motion of the PF$_6$ units. We quantitatively analyze the low-temperature variation of the lattice expansion via the contribution of Einstein oscillators, which allows us to determine for the first time the characteristic frequency of the PF6 librations: {theta}$_E$ = 50 K and {theta}$_E$ = 76 K for the PF$_6$-D12 and PF$_6$-H12 salts, respectively.
InMnO$_3$ is a peculiar member of the hexagonal manganites h-RMnO$_3$ (where R is a rare earth metal element), showing crystalline, electronic and magnetic properties at variance with the other compounds of the family. We have studied high quality sa mples synthesized at high pressure and temperature by powder neutron diffraction. The position of the Mn ions is found to be close to the threshold $it{x}=1/3$ where superexchange Mn-Mn interactions along the $it{c}$ axis compensate. Magnetic long range order occurs below $T_{rm N}$= 120(2) K with a magnetic unit cell doubled along $it{c}$, whereas short range two dimensional dynamical spin correlations are observed above $T_{rm N}$. We propose that pseudo-dipolar interactions are responsible for the long period magnetic structure.
We have performed high resolution neutron diffraction and inelastic neutron scattering experiments in the frustrated multiferroic hexagonal compounds RMnO3 (R=Ho, Yb, Sc, Y), which provide evidence of a strong magneto-elastic coupling in the the whol e family. We can correlate the atomic positions, the type of magnetic structure and the nature of the spin waves whatever the R ion and temperature. The key parameter is the position of the Mn ions in the unit cell with respect to a critical threshold of 1/3, which determines the sign of the coupling between Mn triangular planes.
87 - H. Cao , A. Gukasov , I. Mirebeau 2008
We have studied the field induced magnetic structures in the spin liquid Tb$_2$Ti$_2$O$_7$, in a wide temperature (0.3$<$$T$$<$270 K) and field (0$<$$H$$<$7 T) range, by single crystal neutron diffraction with $bf{H}$ // [110] axis. We combined unpol arized neutron data with polarized ones, analyzed within the local susceptibility model. A ferromagnetic-like structure with $bf{k}$ = 0 propagation vector is induced, whose local order at low field and low temperature is akin to spin ice. The four Tb ions separate in $alpha$ and $beta$ chains having different values of the magnetic moments, which is quantitatively explained by taking the crystal field anisotropy into account. Above 2 T and below 2 K, an antiferromagnetic-like structure with $bf{k}$ = (0,0,1) is induced besides the $bf{k}$ = 0 structure. It shows a reentrant behavior and extends over a finite length scale. It occurs together with a broadening of the nuclear peaks, which suggests a field induced distortion and magnetostriction effect.
We have studied magnetically frustrated Tb$_2$Sn$_2$O$_7$ by neutron diffraction and high resolution energy-resolved neutron scattering. At 0.1 K, we observe short range magnetic correlations with a typical scale of 4 AA, close to the near neighbor d istance between Tb$^{3+}$ ions. %(3.686 AA), This short range order coexists with ferromagnetic correlations and long range spin ice order at the scales of 18 and 190 AA, respectively. Spin dynamics was investigated at a time scale down to 10$^{-9}$s, by energy-resolved experiments on a backscattering spectrometer. We observe a freezing of the spin dynamics for all length-scales, with a strong slowing down of the spin fluctuations when long range order settles in. We discuss the spin fluctuations remaining in the ground state in comparison with previous data obtained by muon spectroscopy.
The magnetic ordering of the hexagonal multiferroic compound YbMnO$_3$ has been studied between 100 K and 1.5 K by combining neutron powder diffraction, $^{170}$Yb Mossbauer spectroscopy and magnetization measurements. The Yb moments of the two cryst allographic sites order at two different temperatures, the $4b$ site together with the Mn moments (at $T_N simeq$85 K) and the $2a$ site well below (at 3.5 K). The temperature dependences of the Mn and Yb moments are explained within a molecular field model, showing that the $4b$ and $2a$ sites order via Yb-Mn and Yb-Yb interactions respectively. A simple picture taking into account the local Mn environment of the Rare earth R ($4b$) ion is proposed to couple R and Mn orders in hexagonal RMnO$_3$ manganites. The nature and symmetry of the R-Mn interactions yielding the R order are discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا