ﻻ يوجد ملخص باللغة العربية
We present an interpretation of zero field diffuse neutron scattering and of high field magnetisation data at very low temperature in the frustrated pyrochlore system Tb2Ti2O7. This material has antiferromagnetic exchange interactions and it is expected to have Ising character at low temperature. Contrary to expectations, it shows no magnetic ordering down to 0.05,K, being thus labelled a spin liquid. However, the ground state in Tb2Ti2O7 is not a mere fluctuating moment paramagnet but, as demonstrated by very recent experiments, a state where the electronic degrees of freedom are hybridised with the phononic variables in an unconventional way. We show here that, by approximating this complex and still unraveled electron-phonon interaction by a dynamic Jahn-Teller coupling, one can account rather well for the diffuse neutron scattering and the low temperature isothermal magnetisation. We discuss the shortcomings of this picture which arise mainly from the fact that the singlet electronic mean field ground state of the model fails to reproduce the observed strong intensity of the elastic and quasi-elastic neutron scattering.
We present single-crystal neutron-diffraction data for the spin-chain compound Ca3Co2O6. The intensity and line shapes of the two families of Bragg peaks characterising both the antiferromagnetic and the ferromagnetic components of the magnetic order
The nature of the low temperature ground state of the pyrochlore compound Tb2Ti2O7 remains a puzzling issue. Dynamic fluctuations and short-range correlations persist down to 50 mK, as evidenced by microscopic probes. In parallel, magnetization measu
In terms of a semi-phenomenological exchange charge model, we have obtained estimates of parameters of the crystal field and parameters of the electron-deformation interaction in terbium titanate Tb2Ti2O7 with a pyrochlore structure. The obtained set
Single-crystal diffuse scattering data have been collected at room temperature on synthetic titanite using both neutrons and high-energy X-rays. A simple ball-and-springs model reproduces the observed diffuse scattering well, confirming its origin to
We report time-of-flight neutron scattering measurements of the magnetic spectrum of Tb3+ in Tb2Ti2O7. The data, which extend up to 120 meV and have calibrated intensity, enable us to consolidate and extend previous studies of the single-ion crystal